Departamento de Física Aplicada, Universidad de Huelva, 21071 Huelva, Spain.
J Chem Phys. 2013 Apr 7;138(13):134701. doi: 10.1063/1.4795836.
We extend the well-known Test-Area methodology of Gloor et al. [J. Chem. Phys. 123, 134703 (2005)], originally proposed to evaluate the surface tension of planar fluid-fluid interfaces along a computer simulation in the canonical ensemble, to deal with the solid-fluid interfacial tension of systems adsorbed on cylindrical pores. The common method used to evaluate the solid-fluid interfacial tension invokes the mechanical relation in terms of the tangential and normal components of the pressure tensor relative to the interface. Unfortunately, this procedure is difficult to implement in the case of cylindrical geometry, and particularly complex in case of nonspherical molecules. Following the original work of Gloor et al., we perform free-energy perturbations due to virtual changes in the solid-fluid surface. In this particular case, the radius and length of the cylindrical pore are varied to ensure constant-volume virtual changes of the solid-fluid surface area along the simulation. We apply the modified methodology for determining the interfacial tension of a system of spherical Lennard-Jones molecules adsorbed inside cylindrical pores that interact with fluid molecules through the generalized 10-4-3 Steele potential recently proposed by Siderius and Gelb [J. Chem. Phys. 135, 084703 (2011)]. We analyze the effect of pore diameter, density of adsorbed molecules, and fluid-fluid cutoff distance of the Lennard-Jones intermolecular potential on the solid-fluid interfacial tension. This extension, as the original Test-Area formulation, offers clear advantages over the classical mechanical route of computational efficiency, easy of implementation, and generality.
我们扩展了 Gloor 等人提出的广为人知的 Test-Area 方法[J. Chem. Phys. 123, 134703 (2005)],该方法最初用于在正则系综的计算机模拟中评估平面流体-流体界面的表面张力。将其扩展后,我们可以处理吸附在圆柱形孔上的系统的固-液界面张力。评估固-液界面张力的常用方法涉及压力张量相对于界面的切向和法向分量的力学关系。不幸的是,这种方法在圆柱形几何形状下很难实施,特别是在非球形分子的情况下非常复杂。我们遵循 Gloor 等人的原始工作,通过虚拟改变固-液表面来进行自由能扰动。在这种特殊情况下,改变圆柱形孔的半径和长度,以确保在模拟过程中固-液表面积的恒容虚拟变化。我们应用修改后的方法来确定吸附在圆柱形孔内的球形 Lennard-Jones 分子系统的界面张力,这些分子与流体分子通过 Siderius 和 Gelb 最近提出的广义 10-4-3 Steele 势能相互作用[J. Chem. Phys. 135, 084703 (2011)]。我们分析了孔直径、吸附分子密度和 Lennard-Jones 分子间势能的流体-流体截断距离对固-液界面张力的影响。与经典的力学方法相比,这种扩展的 Test-Area 方法在计算效率、易于实现和通用性方面具有明显的优势。