Daiber Andreas, Mülsch Alexander, Hink Ulrich, Mollnau Hanke, Warnholtz Ascan, Oelze Matthias, Münzel Thomas
The 2nd Medical Clinic, Department of Cardiology, Johannes Gutenberg University, Mainz, Germany.
Am J Cardiol. 2005 Oct 10;96(7B):25i-36i. doi: 10.1016/j.amjcard.2005.07.030. Epub 2005 Aug 8.
The hemodynamic and anti-ischemic effects of nitroglycerin (NTG) are rapidly blunted as a result of the development of nitrate tolerance. With initiation of NTG therapy, it is possible to detect neurohormonal activation and intravascular volume expansion. These so-called pseudotolerance mechanisms may compromise the vasodilatory effects of NTG. Long-term nitrate treatment also is associated with decreased vascular responsiveness caused by changes in intrinsic mechanisms of the tolerant vasculature itself. According to the oxidative stress concept, increased vascular superoxide (O2-) production and an increased sensitivity to vasoconstrictors secondary to activation of protein kinase C contribute to the development of tolerance. Nicotinamide adenine dinucleotide phosphate oxidase and the uncoupled endothelial nitric oxide synthase may be O2- -producing enzymes. Nitric oxide (NO) and O2-, both derived from NTG and the vessel wall, form peroxynitrite in a diffusion-limited rapid reaction. Peroxynitrite, O2-, or both may be responsible for the development of nitrate tolerance and cross-tolerance to direct NO donors (eg, sodium nitroprusside, sydnonimines) and endothelium-dependent NO synthase-activating vasodilators. Hydralazine is an efficient reactive oxygen species (ROS) scavenger and an inhibitor of O2- generation. When given concomitantly with NTG, hydralazine prevents the development of nitrate tolerance and normalizes endogenous rates of vascular O2- production. Recent experimental work has defined new tolerance mechanisms, including inhibition of the enzyme that bioactivates NTG (ie, mitochondrial aldehyde dehydrogenase isoform 2 [ALDH2]) and mitochondria as potential sources of ROS. NTG-induced ROS inhibit the bioactivation of NTG by ALDH2. Both mechanisms increase oxidative stress and impair NTG bioactivation, and now converge at the level of ALDH2 to support a new theory for NTG tolerance and NTG-induced endothelial dysfunction. The consequences of these processes for NTG downstream targets (eg, soluble guanylyl cyclase, cyclic guanosine monophosphate-dependent protein kinase), toxic effects contributing to endothelial dysfunction (eg, prostacyclin synthase inhibition) and novel applications of the antioxidant properties of hydralazine are discussed.
由于硝酸酯类耐受性的发展,硝酸甘油(NTG)的血流动力学和抗缺血作用会迅速减弱。在开始NTG治疗后,有可能检测到神经激素激活和血管内容量扩张。这些所谓的假性耐受机制可能会损害NTG的血管舒张作用。长期使用硝酸酯类药物还与耐受性血管自身内在机制变化导致的血管反应性降低有关。根据氧化应激概念,血管超氧化物(O2-)生成增加以及蛋白激酶C激活继发的对血管收缩剂敏感性增加有助于耐受性的发展。烟酰胺腺嘌呤二核苷酸磷酸氧化酶和解偶联的内皮型一氧化氮合酶可能是产生O2-的酶。一氧化氮(NO)和O2-均来源于NTG和血管壁,在扩散受限的快速反应中形成过氧亚硝酸盐。过氧亚硝酸盐、O2-或两者可能是硝酸酯类耐受性以及对直接NO供体(如硝普钠、西地那非)和内皮依赖性NO合酶激活血管舒张剂交叉耐受性发展的原因。肼屈嗪是一种有效的活性氧(ROS)清除剂和O2-生成抑制剂。与NTG同时给药时,肼屈嗪可防止硝酸酯类耐受性的发展,并使血管O2-生成的内源性速率正常化。最近的实验工作确定了新的耐受机制,包括抑制生物激活NTG的酶(即线粒体醛脱氢酶同工型2 [ALDH2])以及线粒体作为ROS的潜在来源。NTG诱导的ROS抑制ALDH2对NTG的生物激活。这两种机制均增加氧化应激并损害NTG生物激活,现在在ALDH2水平上趋同,以支持关于NTG耐受性和NTG诱导的内皮功能障碍的新理论。讨论了这些过程对NTG下游靶点(如可溶性鸟苷酸环化酶、环磷酸鸟苷依赖性蛋白激酶)的影响、导致内皮功能障碍的毒性作用(如前列环素合酶抑制)以及肼屈嗪抗氧化特性的新应用。