Suppr超能文献

组蛋白H3赖氨酸36位点的二甲基化在全基因组范围内区分调控染色质和非调控染色质。

Dimethylation of histone H3 at lysine 36 demarcates regulatory and nonregulatory chromatin genome-wide.

作者信息

Rao Bhargavi, Shibata Yoichiro, Strahl Brian D, Lieb Jason D

机构信息

Department of Biology, CB no. 3280, 203 Fordham Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Mol Cell Biol. 2005 Nov;25(21):9447-59. doi: 10.1128/MCB.25.21.9447-9459.2005.

Abstract

Set2p, which mediates histone H3 lysine 36 dimethylation (H3K36me2) in Saccharomyces cerevisiae, has been shown to associate with RNA polymerase II (RNAP II) at individual loci. Here, chromatin immunoprecipitation-microarray experiments normalized to general nucleosome occupancy reveal that nucleosomes within open reading frames (ORFs) and downstream noncoding chromatin were highly dimethylated at H3K36 and that Set2p activity begins at a stereotypic distance from the initiation of transcription genome-wide. H3K36me2 is scarce in regions upstream of divergently transcribed genes, telomeres, silenced mating loci, and regions transcribed by RNA polymerase III, providing evidence that the enzymatic activity of Set2p is restricted to its association with RNAP II. The presence of H3K36me2 within ORFs correlated with the "on" or "off" state of transcription, but the degree of H3K36 dimethylation within ORFs did not correlate with transcription frequency. This provides evidence that H3K36me2 is established during the initial instances of gene transcription, with subsequent transcription having at most a maintenance role. Accordingly, newly activated genes acquire H3K36me2 in a manner that does not correlate with gene transcript levels. Finally, nucleosomes dimethylated at H3K36 appear to be refractory to loss from highly transcribed chromatin. Thus, H3K36me2, which is highly conserved throughout eukaryotic evolution, provides a stable molecular mechanism for establishing chromatin context throughout the genome by distinguishing potential regulatory regions from transcribed chromatin.

摘要

Set2p在酿酒酵母中介导组蛋白H3赖氨酸36二甲基化(H3K36me2),已被证明在单个基因座与RNA聚合酶II(RNAP II)相关联。在这里,归一化到一般核小体占有率的染色质免疫沉淀-微阵列实验表明,开放阅读框(ORF)和下游非编码染色质中的核小体在H3K36处高度二甲基化,并且Set2p活性在全基因组转录起始的固定距离处开始。H3K36me2在双向转录基因上游区域、端粒、沉默的交配位点以及由RNA聚合酶III转录的区域中很少见,这表明Set2p的酶活性仅限于其与RNAP II的关联。ORF内H3K36me2的存在与转录的“开”或“关”状态相关,但ORF内H3K36二甲基化的程度与转录频率无关。这表明H3K36me2在基因转录的初始阶段建立,随后的转录最多起到维持作用。因此,新激活的基因以与基因转录水平无关的方式获得H3K36me2。最后,在H3K36处二甲基化的核小体似乎难以从高度转录的染色质中丢失。因此,在整个真核生物进化过程中高度保守的H3K36me2,通过区分潜在调控区域和转录染色质,为在整个基因组中建立染色质背景提供了一种稳定的分子机制。

相似文献

1
Dimethylation of histone H3 at lysine 36 demarcates regulatory and nonregulatory chromatin genome-wide.
Mol Cell Biol. 2005 Nov;25(21):9447-59. doi: 10.1128/MCB.25.21.9447-9459.2005.
2
The RNA polymerase II kinase Ctk1 regulates positioning of a 5' histone methylation boundary along genes.
Mol Cell Biol. 2007 Jan;27(2):721-31. doi: 10.1128/MCB.01628-06. Epub 2006 Nov 6.
3
Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin.
Science. 2007 May 18;316(5827):1050-4. doi: 10.1126/science.1139004.
5
Distribution and maintenance of histone H3 lysine 36 trimethylation in transcribed locus.
PLoS One. 2015 Mar 16;10(3):e0120200. doi: 10.1371/journal.pone.0120200. eCollection 2015.
6
Set2 methylation of histone H3 lysine 36 suppresses histone exchange on transcribed genes.
Nature. 2012 Sep 20;489(7416):452-5. doi: 10.1038/nature11326. Epub 2012 Aug 22.
7
Methylation of histone H3 mediates the association of the NuA3 histone acetyltransferase with chromatin.
Mol Cell Biol. 2006 Apr;26(8):3018-28. doi: 10.1128/MCB.26.8.3018-3028.2006.
8
Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange.
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1296-301. doi: 10.1073/pnas.1018308108. Epub 2011 Jan 10.
9
Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin.
Mol Cell Biol. 2012 Sep;32(17):3479-85. doi: 10.1128/MCB.00389-12. Epub 2012 Jul 2.
10
Dynamics of replication-independent histone turnover in budding yeast.
Science. 2007 Mar 9;315(5817):1405-8. doi: 10.1126/science.1134053.

引用本文的文献

2
FUS reads histone H3K36me3 to regulate alternative polyadenylation.
Nucleic Acids Res. 2024 Jun 10;52(10):5549-5571. doi: 10.1093/nar/gkae184.
4
Lysine Methyltransferase NSD1 and Cancers: Any Role in Melanoma?
Cancers (Basel). 2022 Oct 5;14(19):4865. doi: 10.3390/cancers14194865.
5
Set2 family regulates mycotoxin metabolism and virulence via H3K36 methylation in pathogenic fungus .
Virulence. 2022 Dec;13(1):1358-1378. doi: 10.1080/21505594.2022.2101218.
6
SMYD5 catalyzes histone H3 lysine 36 trimethylation at promoters.
Nat Commun. 2022 Jun 9;13(1):3190. doi: 10.1038/s41467-022-30940-1.
7
Structural and functional specificity of H3K36 methylation.
Epigenetics Chromatin. 2022 May 18;15(1):17. doi: 10.1186/s13072-022-00446-7.
8
Region-specific H3K9me3 gain in aged somatic tissues in Caenorhabditis elegans.
PLoS Genet. 2021 Sep 10;17(9):e1009432. doi: 10.1371/journal.pgen.1009432. eCollection 2021 Sep.
9
Ready, SET, Go: Post-translational regulation of the histone lysine methylation network in budding yeast.
J Biol Chem. 2021 Aug;297(2):100939. doi: 10.1016/j.jbc.2021.100939. Epub 2021 Jul 3.
10
The H3K36me2 methyltransferase NSD1 modulates H3K27ac at active enhancers to safeguard gene expression.
Nucleic Acids Res. 2021 Jun 21;49(11):6281-6295. doi: 10.1093/nar/gkab473.

本文引用的文献

2
Whole-genome views of chromatin structure.
Chromosome Res. 2005;13(3):289-98. doi: 10.1007/s10577-005-2166-z.
4
Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes.
J Biol Chem. 2005 May 6;280(18):17732-6. doi: 10.1074/jbc.M500796200. Epub 2005 Mar 10.
5
Reading signals on the nucleosome with a new nomenclature for modified histones.
Nat Struct Mol Biol. 2005 Feb;12(2):110-2. doi: 10.1038/nsmb0205-110.
6
Histone H2B ubiquitylation is associated with elongating RNA polymerase II.
Mol Cell Biol. 2005 Jan;25(2):637-51. doi: 10.1128/MCB.25.2.637-651.2005.
7
Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II.
Mol Cell Biol. 2004 Dec;24(23):10111-7. doi: 10.1128/MCB.24.23.10111-10117.2004.
9
Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo.
EMBO J. 2004 Oct 27;23(21):4243-52. doi: 10.1038/sj.emboj.7600433. Epub 2004 Sep 30.
10
Global nucleosome occupancy in yeast.
Genome Biol. 2004;5(9):R62. doi: 10.1186/gb-2004-5-9-r62. Epub 2004 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验