Díaz-Hernández Miguel, Torres-Peraza Jesús, Salvatori-Abarca Alejandro, Morán María A, Gómez-Ramos Pilar, Alberch Jordi, Lucas José J
Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
J Neurosci. 2005 Oct 19;25(42):9773-81. doi: 10.1523/JNEUROSCI.3183-05.2005.
The primary mechanism responsible for Huntington's disease remains unknown. Postulated early pathogenic events include the following: impaired protein folding, altered protein degradation, mitochondrial dysfunction, and transcriptional dysregulation. Although related therapies can delay disease progression in mouse models, they target downstream and probably indirect effects of mutant-huntingtin expression. Accordingly, in case they prove beneficial in humans, they might only palliate some aspects of disease. Our previous studies in the Tet/HD94 conditional model and the recently reported efficacy of RNA interference against mutant huntingtin in another mouse model support silencing mutant-huntingtin expression as a valid therapeutic approach that has the advantage of targeting toxicity at its root. Here, we address whether gene silencing can still be beneficial in the late stages of disease with detectable striatal neuron loss. Stereological analysis was applied to determine an age at which Tet/HD94 mice show a decrease in the number of striatal neurons. Then, progression of neuropathology and motor phenotype were analyzed in mice that were allowed to continue expressing mutant huntingtin and in mice that no longer expressed it. Neuronal loss did not revert in gene-off mice, but the additional loss that takes place in gene-on mice was prevented. The total number of huntingtin-containing inclusions dramatically reverted, but a small fraction of inclusions positive for the amyloid dye thioflavin-S remained. Interestingly, despite a 20% decrease in striatal neurons and the presence of amyloid-like irreversible inclusions, gene-off mice fully recover from their motor deficit, thus ruling out amyloid-like huntingtin inclusions as the main toxic species and suggesting that gene-silencing therapies might work in late stages of disease.
亨廷顿舞蹈症的主要发病机制尚不清楚。早期推测的致病事件包括:蛋白质折叠受损、蛋白质降解改变、线粒体功能障碍和转录失调。尽管相关疗法可延缓小鼠模型中的疾病进展,但它们针对的是突变型亨廷顿蛋白表达的下游效应,可能也是间接效应。因此,即使这些疗法在人体中被证明有益,它们可能也只能缓解疾病的某些方面。我们之前在Tet/HD94条件模型中的研究以及最近在另一种小鼠模型中报道的RNA干扰对突变型亨廷顿蛋白的疗效,都支持将沉默突变型亨廷顿蛋白表达作为一种有效的治疗方法,其优势在于从根源上靶向毒性。在此,我们探讨在纹状体神经元出现可检测到的损失的疾病晚期,基因沉默是否仍然有益。我们应用体视学分析来确定Tet/HD94小鼠纹状体神经元数量减少的年龄。然后,我们分析了继续表达突变型亨廷顿蛋白的小鼠和不再表达该蛋白的小鼠的神经病理学进展和运动表型。在基因敲除小鼠中,神经元损失并未恢复,但基因敲入小鼠中发生的额外损失得到了预防。含有亨廷顿蛋白的包涵体总数显著减少,但一小部分对淀粉样染料硫黄素-S呈阳性的包涵体仍然存在。有趣的是,尽管纹状体神经元减少了20%且存在淀粉样不可逆包涵体,但基因敲除小鼠的运动功能障碍完全恢复,这排除了淀粉样亨廷顿蛋白包涵体是主要毒性物质的可能性,并表明基因沉默疗法可能在疾病晚期起作用。