Bippes Christian A, Humphris Andrew D L, Stark Martin, Müller Daniel J, Janovjak Harald
BioTechnological Center, University of Technology, Tatzberg 49, 01307 Dresden, Germany.
Eur Biophys J. 2006 Feb;35(3):287-92. doi: 10.1007/s00249-005-0023-9. Epub 2005 Oct 20.
Measuring the visco-elastic properties of biological macromolecules constitutes an important step towards the understanding of dynamic biological processes, such as cell adhesion, muscle function, or plant cell wall stability. Force spectroscopy techniques based on the atomic force microscope (AFM) are increasingly used to study the complex visco-elastic response of (bio-)molecules on a single-molecule level. These experiments either require that the AFM cantilever is actively oscillated or that the molecule is clamped at constant force to monitor thermal cantilever motion. Here we demonstrate that the visco-elasticity of single bio-molecules can readily be extracted from the Brownian cantilever motion during conventional force-extension measurements. It is shown that the characteristics of the cantilever determine the signal-to-noise (S/N) ratio and time resolution. Using a small cantilever, the visco-elastic properties of single dextran molecules were resolved with a time resolution of 8.3 ms. The presented approach can be directly applied to probe the dynamic response of complex bio-molecular systems or proteins in force-extension experiments.
测量生物大分子的粘弹性特性是理解动态生物过程(如细胞粘附、肌肉功能或植物细胞壁稳定性)的重要一步。基于原子力显微镜(AFM)的力谱技术越来越多地用于在单分子水平上研究(生物)分子的复杂粘弹性响应。这些实验要么要求AFM悬臂主动振荡,要么要求分子在恒定力下被夹紧以监测悬臂的热运动。在这里,我们证明了在传统的力-伸长测量过程中,可以很容易地从布朗悬臂运动中提取单个生物分子的粘弹性。结果表明,悬臂的特性决定了信噪比(S/N)和时间分辨率。使用小悬臂,以8.3毫秒的时间分辨率解析了单个葡聚糖分子的粘弹性特性。所提出的方法可以直接应用于在力-伸长实验中探测复杂生物分子系统或蛋白质的动态响应。