Suppr超能文献

结合流体动力学和分子动力学来预测小气泡与固体表面之间的去湿现象。

Combining hydrodynamics and molecular kinetics to predict dewetting between a small bubble and a solid surface.

作者信息

Phan Chi M, Nguyen Anh V, Evans Geoffrey M

机构信息

Discipline of Chemical Engineering, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.

出版信息

J Colloid Interface Sci. 2006 Apr 15;296(2):669-76. doi: 10.1016/j.jcis.2005.09.062. Epub 2005 Oct 18.

Abstract

This paper examined the dewetting between a small air bubble and a solid surface in deionised water. Hydrodynamics was used in conjunction with surface molecular kinetics to model and predict the velocity of the moving contact line as a function of the dynamic macroscopic contact angle. The dewetting hydrodynamics was modelled following the approach developed specifically for drops and bubbles using the (absolute) coordinate system with the origin located at the centre of the contact area, which does not move with the moving contact line. The model provides accurate corrections unavailable in the generic hydrodynamic theories developed by Voinov and Cox, and removes the need for a macroscopic length scale employed in their generic theories. Molecular kinetics was used to determine the contact angle of the inner region close to the contact line, where the hydrodynamic approach breaks down due to the singularity. Unlike the generic hydrodynamic theories, the inner (microscopic) angle in our combined model is not a constant (a fitting parameter) but is a function of the moving contact line velocity and other molecular properties of the interfaces. The combined model agreed with the experimental data and produced physically consistent values for the slip length, molecular jumping distance and frequency. The dissolved gases accumulated at the non-wetting solid-liquid interface may influence the slip length.

摘要

本文研究了去离子水中小气泡与固体表面之间的去湿现象。流体动力学与表面分子动力学相结合,用于模拟和预测移动接触线的速度与动态宏观接触角的函数关系。去湿流体动力学是按照专门为液滴和气泡开发的方法进行建模的,使用(绝对)坐标系,其原点位于接触区域的中心,该中心不会随移动接触线移动。该模型提供了Voinov和Cox开发的通用流体动力学理论中无法获得的精确修正,并消除了其通用理论中采用的宏观长度尺度的需求。分子动力学用于确定靠近接触线的内部区域的接触角,在该区域流体动力学方法由于奇异性而失效。与通用流体动力学理论不同,我们的组合模型中的内部(微观)角度不是常数(一个拟合参数),而是移动接触线速度和界面其他分子性质的函数。组合模型与实验数据一致,并给出了滑移长度、分子跳跃距离和频率的物理上一致的值。积聚在非润湿固液界面处的溶解气体可能会影响滑移长度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验