Suppr超能文献

用于分类问题的进化算法与神经网络组合的实证比较。

An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems.

作者信息

Cantú-Paz Erick, Kamath Chandrika

机构信息

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94605, USA.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2005 Oct;35(5):915-27. doi: 10.1109/tsmcb.2005.847740.

Abstract

There are numerous combinations of neural networks (NNs) and evolutionary algorithms (EAs) used in classification problems. EAs have been used to train the networks, design their architecture, and select feature subsets. However, most of these combinations have been tested on only a few data sets and many comparisons are done inappropriately measuring the performance on training data or without using proper statistical tests to support the conclusions. This paper presents an empirical evaluation of eight combinations of EAs and NNs on 15 public-domain and artificial data sets. Our objective is to identify the methods that consistently produce accurate classifiers that generalize well. In most cases, the combinations of EAs and NNs perform equally well on the data sets we tried and were not more accurate than hand-designed neural networks trained with simple backpropagation.

摘要

在分类问题中,神经网络(NNs)和进化算法(EAs)有多种组合方式。进化算法已被用于训练网络、设计其架构以及选择特征子集。然而,这些组合大多仅在少数数据集上进行了测试,并且许多比较在衡量训练数据性能时并不恰当,或者没有使用适当的统计测试来支持结论。本文对进化算法和神经网络的八种组合在15个公共领域和人工数据集上进行了实证评估。我们的目标是识别出能够始终产生准确且泛化能力良好的分类器的方法。在大多数情况下,进化算法和神经网络的组合在我们尝试的数据集上表现相当,并不比使用简单反向传播训练的手工设计神经网络更准确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验