Suppr超能文献

在具有任意度分布的随机网络中调整聚类

Tuning clustering in random networks with arbitrary degree distributions.

作者信息

Angeles Serrano M, Boguñá Marián

机构信息

School of Informatics, Indiana University, Eigenmann Hall, 1900 East Tenth Street, Bloomington, Indiana 47406, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Sep;72(3 Pt 2):036133. doi: 10.1103/PhysRevE.72.036133. Epub 2005 Sep 30.

Abstract

We present a generator of random networks where both the degree-dependent clustering coefficient and the degree distribution are tunable. Following the same philosophy as in the configuration model, the degree distribution and the clustering coefficient for each class of nodes of degree k are fixed ad hoc and a priori. The algorithm generates corresponding topologies by applying first a closure of triangles and second the classical closure of remaining free stubs. The procedure unveils an universal relation among clustering and degree-degree correlations for all networks, where the level of assortativity establishes an upper limit to the level of clustering. Maximum assortativity ensures no restriction on the decay of the clustering coefficient whereas disassortativity sets a stronger constraint on its behavior. Correlation measures in real networks are seen to observe this structural bound.

摘要

我们提出了一种随机网络生成器,其中度相关聚类系数和度分布都是可调的。遵循与配置模型相同的理念,度为k的每类节点的度分布和聚类系数是事先特别固定的。该算法首先通过三角形闭合,然后通过剩余自由短枝的经典闭合来生成相应的拓扑结构。该过程揭示了所有网络中聚类与度-度相关性之间的普遍关系,其中 assortativity 水平为聚类水平设定了上限。最大 assortativity 确保对聚类系数的衰减没有限制,而非 assortativity 对其行为设置了更强的约束。实际网络中的相关性度量被发现遵循这种结构约束。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验