Suppr超能文献

SpecNet:一种生成广泛特定结构的空间网络算法。

SpecNet: a spatial network algorithm that generates a wide range of specific structures.

机构信息

Systems Biology Research Centre, University of Skövde, Skövde, Sweden.

出版信息

PLoS One. 2012;7(8):e42679. doi: 10.1371/journal.pone.0042679. Epub 2012 Aug 2.

Abstract

Network measures are used to predict the behavior of different systems. To be able to investigate how various structures behave and interact we need a wide range of theoretical networks to explore. Both spatial and non-spatial methods exist for generating networks but they are limited in the ability of producing wide range of network structures. We extend an earlier version of a spatial spectral network algorithm to generate a large variety of networks across almost all the theoretical spectra of the following network measures: average clustering coefficient, degree assortativity, fragmentation index, and mean degree. We compare this extended spatial spectral network-generating algorithm with a non-spatial algorithm regarding their ability to create networks with different structures and network measures. The spatial spectral network-generating algorithm can generate networks over a much broader scale than the non-spatial and other known network algorithms. To exemplify the ability to regenerate real networks, we regenerate networks with structures similar to two real Swedish swine transport networks. Results show that the spatial algorithm is an appropriate model with correlation coefficients at 0.99. This novel algorithm can even create negative assortativity and managed to achieve assortativity values that spans over almost the entire theoretical range.

摘要

网络测度被用于预测不同系统的行为。为了能够研究各种结构的行为和相互作用方式,我们需要广泛的理论网络来进行探索。现有的网络生成方法既有空间方法也有非空间方法,但它们在生成广泛的网络结构方面能力有限。我们扩展了一个早期的空间谱网络算法版本,以生成各种不同网络结构和网络测度的网络,这些网络测度包括:平均聚类系数、度的相关性、碎裂指数和平均度。我们将这个扩展的空间谱网络生成算法与非空间算法进行比较,以评估它们在生成不同结构和网络测度的网络方面的能力。空间谱网络生成算法可以生成比非空间和其他已知网络算法更广泛的网络。为了举例说明该算法能够生成真实网络的能力,我们使用类似于两个真实的瑞典猪运输网络的结构来再生网络。结果表明,该空间算法是一个合适的模型,相关系数高达 0.99。这个新颖的算法甚至可以创建负的相关性,并设法实现了几乎涵盖整个理论范围的相关性值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f2e/3411677/175c4eb3d734/pone.0042679.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验