Suppr超能文献

饮用水浓度监管估计值与监测数据的比较。

Comparison of regulatory estimates of drinking water concentrations with monitoring data.

作者信息

Jones Russell L

机构信息

Bayer CropScience, 17745 South Metcalf Avenue, Stilwell, KS 66085, USA.

出版信息

J Agric Food Chem. 2005 Nov 2;53(22):8835-9. doi: 10.1021/jf050041k.

Abstract

Currently, regulatory practice in the United States is to estimate potential concentrations in drinking water from surface water by using an index reservoir scenario. This approach extrapolates results from the modeling of a single field with maximum application rates to the watershed scale, based on a percent crop area estimate. Since 1998, Bayer CropScience and its predecessor companies have conducted drinking water monitoring studies with a number of different compounds. The results from these studies show that the index reservoir scenario greatly overpredicts residues in surface water. The most important factor is the overestimation of use within a watershed. Other factors contributing to the overestimation of concentrations are the conservative procedures used to obtain the chemical fate related input parameters and the simplified hydrology. A new procedure based on the USGS WARP model, being developed by a group of scientists from the EPA, USGS, USDA, and industry, will provide more realistic estimates of concentrations of pesticides and their metabolites in drinking water.

摘要

目前,美国的监管做法是通过使用指数水库情景来估算地表水进入饮用水中的潜在浓度。这种方法基于作物种植面积百分比估算,将单个田地以最大施用量进行建模得到的结果外推到流域尺度。自1998年以来,拜耳作物科学公司及其前身公司对多种不同化合物进行了饮用水监测研究。这些研究结果表明,指数水库情景大大高估了地表水中的残留量。最重要的因素是对流域内使用量的高估。导致浓度高估的其他因素包括用于获取与化学归宿相关输入参数的保守程序以及简化的水文情况。由美国环境保护局、美国地质调查局、美国农业部和行业的一组科学家正在开发的基于美国地质调查局WARP模型的新程序,将能更实际地估算饮用水中农药及其代谢物的浓度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验