Hilt J Zachary, Peppas Nicholas A
Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY 40506, USA.
Int J Pharm. 2005 Dec 8;306(1-2):15-23. doi: 10.1016/j.ijpharm.2005.09.022. Epub 2005 Oct 25.
We review newest developments in the design and fabrication of drug delivery devices based on micropatterned structures. Electronic devices have now reached a stage of dimensions comparable to those of biological macromolecules. This raises exciting possibilities for combining microelectronics and biotechnology to develop new technologies with unprecedented power and versatility. While molecular electronics use the unique self-assembly, switching and dynamic capabilities of molecules to miniaturize electronic devices, nanoscale biosystems use the power of microelectronics to design ultrafast/ultrasmall biocompatible devices, including implants, that can revolutionize the field of bioengineering. Thus, in recent years we have seen an explosion in the field of novel microfabricated and nanofabricated devices for drug delivery. Such devices seek to develop a platform of well controlled functions in the micro- or nano-level. They include nanoparticulate systems, recognitive molecular systems, biosensing devices, and microfabricated and microelectronic devices.
我们回顾了基于微图案结构的药物递送装置在设计与制造方面的最新进展。电子设备如今已发展到尺寸可与生物大分子相媲美的阶段。这为将微电子学与生物技术相结合以开发具有前所未有的强大功能和多功能性的新技术带来了令人兴奋的可能性。虽然分子电子学利用分子独特的自组装、开关和动态能力来使电子设备小型化,但纳米级生物系统则利用微电子学的力量来设计超快速/超小型生物相容性装置,包括植入物,这些装置能够彻底改变生物工程领域。因此,近年来我们看到用于药物递送的新型微制造和纳米制造装置领域出现了爆炸式增长。此类装置旨在开发一个在微观或纳米层面具有良好控制功能的平台。它们包括纳米颗粒系统、识别分子系统、生物传感装置以及微制造和微电子装置。