Kidd Kameha R, Dal Ponte Donny, Stone Alice L, Hoying James B, Nagle Raymond B, Williams Stuart K
Biomedical Engineering Program University of Arizona, Tucson, Arizona 85724, USA.
Tissue Eng. 2005 Sep-Oct;11(9-10):1379-91. doi: 10.1089/ten.2005.11.1379.
Biomedical implants often exhibit poor clinical performance due to the formation of a periimplant avascular fibrous capsule. Surface modification of synthetic materials has been evaluated to accelerate the formation of functional microcirculation in association with implants. The current study used a flow-mediated protein deposition system to modify expanded polytetrafluoroethylene (ePTFE) with a laminin-5-rich conditioned growth medium and with medium from which laminin-5 had been selectively removed. An in vitro model of endothelial cell adherence determined that laminin-5 modification resulted in significantly increased adhesion of human microvessel endothelial cells to ePTFE. In vivo studies evaluating the periimplant vascular response to laminin-5-treated samples indicated that absorption of laminin-5-rich conditioned medium supported accelerated neovascularization of ePTFE implants. A flow system designed to treat porous implant materials facilitates laminin-5 modification of commercially available ePTFE, resulting in increased endothelial cell adhesion in vitro and increased vascularization in vivo.
生物医学植入物常常由于植入物周围无血管纤维囊的形成而表现出较差的临床性能。合成材料的表面改性已被评估用于加速与植入物相关的功能性微循环的形成。当前研究使用流动介导的蛋白质沉积系统,用富含层粘连蛋白-5的条件生长培养基和已选择性去除层粘连蛋白-5的培养基对膨体聚四氟乙烯(ePTFE)进行改性。内皮细胞黏附的体外模型确定,层粘连蛋白-5改性导致人微血管内皮细胞与ePTFE的黏附显著增加。评估植入物周围对层粘连蛋白-5处理样本的血管反应的体内研究表明,富含层粘连蛋白-5的条件培养基的吸收支持了ePTFE植入物的加速新生血管形成。一种设计用于处理多孔植入材料的流动系统有助于对市售ePTFE进行层粘连蛋白-5改性,从而在体外增加内皮细胞黏附,在体内增加血管化。