Soto Paul L, McDowell Jack J, Dallery Jesse
Emory University, USA.
J Exp Anal Behav. 2005 Sep;84(2):185-225. doi: 10.1901/jeab.2005.09-05.
Herrnstein's hyperbola describes the relation between response rate and reinforcer rate on variable-interval (VI) schedules. According to Herrnstein's (1970) interpretation, the parameter r(e) represents the reinforcer rate extraneous to the alternative to which the equation is fitted (the target alternative). The hyperbola is based on an assumption that extraneous reinforcer rate remains constant with changes in reinforcer rate on the target alternative (the constant-r(e) assumption) and that matching with no bias and perfect sensitivity occurs between response and reinforcer ratios. In the present experiment, 12 rats pressed levers for food on a series of 10 VI schedules arranged on the target alternative. Across conditions, six VI values and extinction were arranged on a second alternative. Reinforcer rate on the second alternative, r2, negatively covaried with reinforcer rate on the target alternative for five of the six VI values on the second alternative, and significant degrees of bias and undermatching occurred in response ratios. Given covariation of reinforcer rate on the second and target alternatives, the constant-r(e) assumption can be maintained only by assuming that reinforcer rate from unmeasured background sources, rb, covaries with reinforcer rate on the second alternative such that their sum, r(e), remains constant. In a single-schedule arrangement, however, r(e) equals rb and thus rb is assumed to remain constant, forcing a conceptual inconsistency between single- and concurrent-schedule arrangements. Furthermore, although an alternative formulation of the hyperbola can account for variations in bias and sensitivity, the modified equation also is based on the constant-r(e) assumption and therefore suffers from the same logical problem as the hyperbola when reinforcer rate on the second alternative covaries with reinforcer rate on the target alternative.
赫尔恩斯坦双曲线描述了可变间隔(VI)强化程序下反应速率与强化物速率之间的关系。根据赫尔恩斯坦(1970年)的解释,参数r(e)代表了与拟合该方程的替代方案(目标替代方案)无关的强化物速率。该双曲线基于这样一种假设,即无关强化物速率随着目标替代方案上强化物速率的变化而保持恒定(恒定r(e)假设),并且在反应与强化物比率之间不存在偏差且具有完美敏感性的情况下发生匹配。在本实验中,12只大鼠在一系列针对目标替代方案安排的10个VI强化程序上按压杠杆获取食物。在不同条件下,在第二个替代方案上安排了六个VI值和消退程序。第二个替代方案上的强化物速率r2,对于第二个替代方案上六个VI值中的五个,与目标替代方案上的强化物速率呈负相关,并且在反应比率中出现了显著程度的偏差和欠匹配。考虑到第二个替代方案和目标替代方案上强化物速率的协变关系,只有通过假设来自未测量背景源的强化物速率rb与第二个替代方案上的强化物速率协变,使得它们的总和r(e)保持恒定,才能维持恒定r(e)假设。然而,在单一强化程序安排中,r(e)等于rb,因此假设rb保持恒定,这就导致了单一强化程序安排和并发强化程序安排之间的概念不一致。此外,尽管双曲线的另一种表述可以解释偏差和敏感性的变化,但修改后的方程同样基于恒定r(e)假设,因此当第二个替代方案上的强化物速率与目标替代方案上的强化物速率协变时,也会面临与双曲线相同的逻辑问题。