Suppr超能文献

技术洞察:利用组织微阵列技术鉴定生物标志物

Technology insight: Identification of biomarkers with tissue microarray technology.

作者信息

Giltnane Jena M, Rimm David L

机构信息

Yale University School of Medicine, Department of Experimental Pathology, New Haven, CT 06520-8023, USA.

出版信息

Nat Clin Pract Oncol. 2004 Dec;1(2):104-11. doi: 10.1038/ncponc0046.

Abstract

High-throughput technologies have been developed in the hope of increasing the pace of biomedical research, and accelerating the rate of translation from bench to bedside. Using such technology in target discovery has resulted in the need for systematic validation of the targets in an equally rapid manner. For example, gene expression microarrays have highlighted many potential targets in cancer, and tissue microarrays have emerged as a powerful tool to validate these targets by measuring tumor-specific protein expression and linking it to clinical outcome. Automated quantitative analysis of the tissue microarray 'spots' is beginning to take the technology a step further, removing observer bias, and providing standards for quality control and the potential for high-throughput analysis. The validation required for translation of tissue biomarkers from the research lab to the clinical lab will probably rely heavily on the combination of tissue microarray technology with automated quantitative analysis.

摘要

高通量技术的发展旨在加快生物医学研究的步伐,并加速从实验室到临床应用的转化速度。在靶点发现中使用此类技术导致需要以同样快速的方式对靶点进行系统验证。例如,基因表达微阵列已凸显出癌症中的许多潜在靶点,而组织微阵列已成为一种强大的工具,可通过测量肿瘤特异性蛋白表达并将其与临床结果相关联来验证这些靶点。对组织微阵列“斑点”的自动定量分析正使该技术更进一步,消除观察者偏差,并提供质量控制标准以及高通量分析的潜力。从研究实验室到临床实验室的组织生物标志物转化所需的验证可能将严重依赖于组织微阵列技术与自动定量分析的结合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验