van den Berg Stéphanie M, Glas Cees A W, Boomsma Dorret I
Department of Biological Psychology, Vrije Universiteit Amsterdam, Van der Boechorststraat 1, Amsterdam 1081 BT, The Netherlands.
Behav Genet. 2007 Jul;37(4):604-16. doi: 10.1007/s10519-007-9156-1. Epub 2007 May 30.
Large scale research projects in behaviour genetics and genetic epidemiology are often based on questionnaire or interview data. Typically, a number of items is presented to a number of subjects, the subjects' sum scores on the items are computed, and the variance of sum scores is decomposed into a number of variance components. This paper discusses several disadvantages of the approach of analysing sum scores, such as the attenuation of correlations amongst sum scores due to their unreliability. It is shown that the framework of Item Response Theory (IRT) offers a solution to most of these problems. We argue that an IRT approach in combination with Markov chain Monte Carlo (MCMC) estimation provides a flexible and efficient framework for modelling behavioural phenotypes. Next, we use data simulation to illustrate the potentially huge bias in estimating variance components on the basis of sum scores. We then apply the IRT approach with an analysis of attention problems in young adult twins where the variance decomposition model is extended with an IRT measurement model. We show that when estimating an IRT measurement model and a variance decomposition model simultaneously, the estimate for the heritability of attention problems increases from 40% (based on sum scores) to 73%.
行为遗传学和遗传流行病学领域的大规模研究项目通常基于问卷调查或访谈数据。一般来说,会向若干受试者呈现一系列项目,计算受试者在这些项目上的总分,然后将总分的方差分解为若干方差成分。本文讨论了分析总分这种方法的几个缺点,比如由于总分不可靠导致总分之间相关性的衰减。研究表明,项目反应理论(IRT)框架为解决这些问题中的大多数提供了一种方案。我们认为,IRT方法与马尔可夫链蒙特卡罗(MCMC)估计相结合,为行为表型建模提供了一个灵活且高效的框架。接下来,我们通过数据模拟来说明基于总分估计方差成分时可能存在的巨大偏差。然后,我们将IRT方法应用于对年轻成人双胞胎注意力问题的分析,其中方差分解模型通过IRT测量模型进行了扩展。我们表明,当同时估计IRT测量模型和方差分解模型时,注意力问题遗传度的估计值从40%(基于总分)提高到了73%。