Tran Robert K, Zilberman Daniel, de Bustos Cecilia, Ditt Renata F, Henikoff Jorja G, Lindroth Anders M, Delrow Jeffrey, Boyle Tom, Kwong Samson, Bryson Terri D, Jacobsen Steven E, Henikoff Steven
Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
Genome Biol. 2005;6(11):R90. doi: 10.1186/gb-2005-6-11-r90. Epub 2005 Oct 19.
DNA methylation occurs at preferred sites in eukaryotes. In Arabidopsis, DNA cytosine methylation is maintained by three subfamilies of methyltransferases with distinct substrate specificities and different modes of action. Targeting of cytosine methylation at selected loci has been found to sometimes involve histone H3 methylation and small interfering (si)RNAs. However, the relationship between different cytosine methylation pathways and their preferred targets is not known.
We used a microarray-based profiling method to explore the involvement of Arabidopsis CMT3 and DRM DNA methyltransferases, a histone H3 lysine-9 methyltransferase (KYP) and an Argonaute-related siRNA silencing component (AGO4) in methylating target loci. We found that KYP targets are also CMT3 targets, suggesting that histone methylation maintains CNG methylation genome-wide. CMT3 and KYP targets show similar proximal distributions that correspond to the overall distribution of transposable elements of all types, whereas DRM targets are distributed more distally along the chromosome. We find an inverse relationship between element size and loss of methylation in ago4 and drm mutants.
We conclude that the targets of both DNA methylation and histone H3K9 methylation pathways are transposable elements genome-wide, irrespective of element type and position. Our findings also suggest that RNA-directed DNA methylation is required to silence isolated elements that may be too small to be maintained in a silent state by a chromatin-based mechanism alone. Thus, parallel pathways would be needed to maintain silencing of transposable elements.
DNA甲基化发生在真核生物的特定位点。在拟南芥中,DNA胞嘧啶甲基化由具有不同底物特异性和不同作用模式的三个甲基转移酶亚家族维持。已发现选定基因座处的胞嘧啶甲基化靶向有时涉及组蛋白H3甲基化和小干扰(si)RNA。然而,不同胞嘧啶甲基化途径与其首选靶标之间的关系尚不清楚。
我们使用基于微阵列的分析方法来探究拟南芥CMT3和DRM DNA甲基转移酶、组蛋白H3赖氨酸-9甲基转移酶(KYP)以及与AGO4相关的siRNA沉默组分在甲基化靶基因座中的作用。我们发现KYP的靶标也是CMT3的靶标,这表明组蛋白甲基化在全基因组范围内维持CNG甲基化。CMT3和KYP的靶标显示出相似的近端分布,这与所有类型转座元件的总体分布相对应,而DRM的靶标沿染色体分布更靠远端。我们在ago4和drm突变体中发现元件大小与甲基化缺失之间存在反比关系。
我们得出结论,DNA甲基化和组蛋白H3K9甲基化途径的靶标在全基因组范围内都是转座元件,与元件类型和位置无关。我们的研究结果还表明,RNA指导的DNA甲基化对于沉默那些可能太小而无法仅通过基于染色质的机制维持沉默状态的孤立元件是必需的。因此,需要平行途径来维持转座元件的沉默。