Suppr超能文献

草花粉大气浓度年变化的预测。一种基于气象因素和谷物作物估计的方法。

Prediction of annual variations in atmospheric concentrations of grass pollen. A method based on meteorological factors and grain crop estimates.

作者信息

Subiza J, Masiello J M, Subiza J L, Jerez M, Hinojosa M, Subiza E

机构信息

General Pardiñas Center of Allergy and Clinical Immunology, Madrid, Spain.

出版信息

Clin Exp Allergy. 1992 May;22(5):540-6. doi: 10.1111/j.1365-2222.1992.tb00163.x.

Abstract

We performed an aerobiologic observation of the grasses present in Madrid for 14 years (1978-1991), using volumetric air samplers. The counts obtained show that the major grass pollen release period (average daily grass pollen counts greater than 50 grains/m3 of air) occurs in the months of May and June, although lower counts can occur some days from the end of January onward. There are wide year-to-year variations in total atmospheric grass pollen counts, expressed as the total sum of the mean daily concentrations from April 1st to July 30th (ranging from 2568 to 6624). A strong, statistically significant correlation, based on Spearman's rank test and/or simple and multiple linear regressions, was found between the total grass seasonal count and preseasonal rainfall from October to March (R2 = 0.64; P = 0.0429). The meteorological variable which gave the correlation with greatest statistical significance (R2 = 0.97; P = 0.0016) was the average monthly preseasonal humidity from October to March. A good correlation was also found between March estimates of wheat, rye and barley crops and the total grass count (R2 = 0.73; P = 0.006). A model was designed from the above mentioned humidity variable through a multilinear regression analysis, and it was possible to predict, at the beginning of April, total seasonal counts for 1989 (predicted = 5468; actual = 4410; average error = 24%), 1990 (5033; 6090; -17%) and 1991 (3930; 2568; 53%). These data may help clinicians to predict and prepare themselves for the intensity of the grass pollen season and to explain yearly variations in the severity of symptoms.

摘要

我们使用容积式空气采样器,对马德里地区的草类进行了为期14年(1978 - 1991年)的空气生物学观测。所得计数结果表明,主要的草花粉释放期(日均草花粉计数大于50粒/立方米空气)出现在5月和6月,不过从1月底开始的某些日子里也会出现较低的计数。以4月1日至7月30日的日均浓度总和表示的大气中草花粉总计数存在很大的逐年差异(范围为2568至6624)。基于斯皮尔曼等级检验和/或简单及多元线性回归,发现草类季节性总计数与10月至3月的季前降雨量之间存在强烈的、具有统计学意义的相关性(R2 = 0.64;P = 0.0429)。与相关性具有最大统计学意义(R2 = 0.97;P = 0.0016)的气象变量是10月至3月的月平均季前湿度。3月小麦、黑麦和大麦作物的估计产量与草类总计数之间也发现了良好的相关性(R2 = 0.73;P = 0.006)。通过多元线性回归分析,根据上述湿度变量设计了一个模型,在4月初能够预测1989年的季节性总计数(预测值 = 5468;实际值 = 4410;平均误差 = 24%)、1990年(5033;6090; - 17%)和1991年(3930;2568;53%)。这些数据可能有助于临床医生预测草花粉季节的强度并做好准备,以及解释症状严重程度的逐年变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验