Park Yuhyun, Tian Lu, Wei L J
Department of Biostatistics, Harvard University, 677 Huntington Avenue, Boston, MA 02115, USA.
Biostatistics. 2006 Apr;7(2):252-67. doi: 10.1093/biostatistics/kxj005. Epub 2005 Nov 10.
In survival analysis, the event time T is often subject to dependent censorship. Without assuming a parametric model between the failure and censoring times, the parameter Theta of interest, for example, the survival function of T, is generally not identifiable. On the other hand, the collection Omega of all attainable values for Theta may be well defined. In this article, we present nonparametric inference procedures for Omega in the presence of a mixture of dependent and independent censoring variables. By varying the criteria of classifying censoring to the dependent or independent category, our proposals can be quite useful for the so-called sensitivity analysis of censored failure times. The case that the failure time is subject to possibly dependent interval censorship is also discussed in this article. The new proposals are illustrated with data from two clinical studies on HIV-related diseases.
在生存分析中,事件时间T常常受到相依删失的影响。在不假设失效时间和删失时间之间存在参数模型的情况下,例如感兴趣的参数Theta(即T的生存函数)通常是不可识别的。另一方面,Theta所有可达到值的集合Ω可能定义明确。在本文中,我们针对存在相依和独立删失变量混合的情况,提出了Ω的非参数推断程序。通过改变将删失分类为相依或独立类别的标准,我们的提议对于所谓删失失效时间的敏感性分析可能非常有用。本文还讨论了失效时间可能受到相依区间删失影响的情况。通过两项关于HIV相关疾病的临床研究数据对新提议进行了说明。