Nagano Soshichiro, von Stetten David, Guan Kaoling, Chen Peng-Yuan, Song Chen, Barends Thomas, Weiss Manfred S, Feiler Christian G, Dörner Katerina, de Diego Martinez Iñaki, Schubert Robin, Bielecki Johan, Brings Lea, Han Huijong, Kharitonov Konstantin, Kim Chan, Kloos Marco, Koliyadu Jayanath C P, Koua Faisal H M, Round Ekaterina, Sarma Abhisakh, Sato Tokushi, Schmidt Christina, Valerio Joana, Wrona Agnieszka, Schulz Joachim, de Wijn Raphael, Letrun Romain, Bean Richard, Mancuso Adrian, Heyne Karsten, Hughes Jon
Institute for Plant Physiology, Justus Liebig University, Giessen, Germany.
Department of Physics, Free University of Berlin, Berlin, Germany.
Nat Commun. 2025 Jun 21;16(1):5319. doi: 10.1038/s41467-025-60738-w.
Phytochromes are biliprotein photoreceptors widespread amongst microorganisms and ubiquitous in plants where they control developmental processes as diverse as germination, stem elongation and floral induction through the photoconversion of inactive Pr to the Pfr signalling state. Here we report crystal structures of the chromophore-binding module of soybean phytochrome A, including ~2.2 Å XFEL structures of Pr and Pfr at ambient temperature and high resolution cryogenic structures of Pr. In the Pfr structure, the chromophore is exposed to the medium, the D-ring remaining α-facial following the likely clockwise photoflip. The chromophore shifts within its pocket, while its propionate side chains, their partners as well as three neighbouring tyrosines shift radically. Helices near the chromophore show substantial shifts that might represent components of the light signal. These changes reflect those in bacteriophytochromes despite their quite different signalling mechanisms, implying that fundamental aspects of phytochrome photoactivation have been repurposed for photoregulation in the eukaryotic plant.
光敏色素是一种双蛋白光感受器,广泛存在于微生物中,在植物中也普遍存在。在植物中,它们通过将无活性的Pr光转化为Pfr信号状态,控制着从种子萌发、茎伸长到开花诱导等多种发育过程。在此,我们报道了大豆光敏色素A生色团结合模块的晶体结构,包括环境温度下Pr和Pfr的约2.2ÅX射线自由电子激光结构以及Pr的高分辨率低温结构。在Pfr结构中,生色团暴露于介质中,在可能的顺时针光翻转后,D环保持α面。生色团在其口袋内移动,而其丙酸侧链、其伙伴以及三个相邻的酪氨酸则发生显著移动。生色团附近的螺旋显示出显著的移动,这可能代表光信号的组成部分。尽管细菌光敏色素和植物光敏色素的信号传导机制有很大不同,但这些变化反映了细菌光敏色素中的变化,这意味着光敏色素光激活的基本方面已被重新用于真核植物的光调节。