Giraud Eric, Zappa Sébastien, Vuillet Laurie, Adriano Jean-Marc, Hannibal Laure, Fardoux Joël, Berthomieu Catherine, Bouyer Pierre, Pignol David, Verméglio André
Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, TA 10/J, Campus de Baillarguet, Montpellier France.
J Biol Chem. 2005 Sep 16;280(37):32389-97. doi: 10.1074/jbc.M506890200. Epub 2005 Jul 11.
Phytochromes are chromoproteins found in plants and bacteria that switch between two photointerconvertible forms via the photoisomerization of their chromophore. These two forms, Pr and Pfr, absorb red and far-red light, respectively. We have characterized the biophysical and biochemical properties of two bacteriophytochromes, RpBphP2 and RpBphP3, from the photosynthetic bacterium Rhodopseudomonas palustris. Their genes are contiguous and localized near the pucBAd genes encoding the polypeptides of the light harvesting complexes LH4, whose synthesis depends on the light intensity. At variance with all (bacterio)phytochromes studied so far, the light-induced isomerization of the chromophore of RpBphP3 converts the Pr form to a form absorbing at shorter wavelength around 645 nm, designated as Pnr for near red. The quantum yield for the transformation of Pr into Pnr is about 6-fold smaller than for the reverse reaction. Both RpBphP2 and RpBphP3 autophosphorylate in their dark-adapted Pr forms and transfer their phosphate to a common response regulator Rpa3017. Under semiaerobic conditions, LH4 complexes replace specifically the LH2 complexes in wild-type cells illuminated by wavelengths comprised between 680 and 730 nm. In contrast, mutants deleted in each of these two bacteriophytochromes display no variation in the composition of their light harvesting complexes whatever the light intensity. From both the peculiar properties of these bacteriophytochromes and the phenotypes of their deletion mutants, we propose that they operate in tandem to control the synthesis of LH4 complexes by measuring the relative intensities of 645 and 710 nm lights.
光敏色素是存在于植物和细菌中的色素蛋白,其通过发色团的光异构化在两种光可互转换形式之间切换。这两种形式,即红光吸收型(Pr)和远红光吸收型(Pfr),分别吸收红光和远红光。我们已经表征了来自光合细菌沼泽红假单胞菌的两种细菌光敏色素RpBphP2和RpBphP3的生物物理和生化特性。它们的基因相邻且定位在编码捕光复合物LH4多肽的pucBAd基因附近,LH4的合成取决于光强度。与迄今为止研究的所有(细菌)光敏色素不同,RpBphP3发色团的光诱导异构化将Pr形式转化为在约645nm较短波长处吸收的形式,称为近红外吸收型(Pnr)。Pr转化为Pnr的量子产率比反向反应小约6倍。RpBphP2和RpBphP3在其暗适应的Pr形式下都能自动磷酸化,并将其磷酸基团转移到共同的应答调节因子Rpa3017上。在半好氧条件下,LH4复合物在被680至730nm波长照射的野生型细胞中特异性取代LH2复合物。相反,这两种细菌光敏色素各自缺失的突变体,无论光强度如何,其捕光复合物的组成都没有变化。基于这些细菌光敏色素的独特性质及其缺失突变体的表型,我们提出它们协同作用,通过测量645和710nm光的相对强度来控制LH4复合物的合成。