Suppr超能文献

评估高通量计算方法和实验室方法在全基因组范围内鉴定细菌蛋白质亚细胞定位的精度。

Assessing the precision of high-throughput computational and laboratory approaches for the genome-wide identification of protein subcellular localization in bacteria.

作者信息

Rey Sébastien, Gardy Jennifer L, Brinkman Fiona S L

机构信息

Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.

出版信息

BMC Genomics. 2005 Nov 17;6:162. doi: 10.1186/1471-2164-6-162.

Abstract

BACKGROUND

Identification of a bacterial protein's subcellular localization (SCL) is important for genome annotation, function prediction and drug or vaccine target identification. Subcellular fractionation techniques combined with recent proteomics technology permits the identification of large numbers of proteins from distinct bacterial compartments. However, the fractionation of a complex structure like the cell into several subcellular compartments is not a trivial task. Contamination from other compartments may occur, and some proteins may reside in multiple localizations. New computational methods have been reported over the past few years that now permit much more accurate, genome-wide analysis of the SCL of protein sequences deduced from genomes. There is a need to compare such computational methods with laboratory proteomics approaches to identify the most effective current approach for genome-wide localization characterization and annotation.

RESULTS

In this study, ten subcellular proteome analyses of bacterial compartments were reviewed. PSORTb version 2.0 was used to computationally predict the localization of proteins reported in these publications, and these computational predictions were then compared to the localizations determined by the proteomics study. By using a combined approach, we were able to identify a number of contaminants and proteins with dual localizations, and were able to more accurately identify membrane subproteomes. Our results allowed us to estimate the precision level of laboratory subproteome studies and we show here that, on average, recent high-precision computational methods such as PSORTb now have a lower error rate than laboratory methods.

CONCLUSION

We have performed the first focused comparison of genome-wide proteomic and computational methods for subcellular localization identification, and show that computational methods have now attained a level of precision that is exceeding that of high-throughput laboratory approaches. We note that analysis of all cellular fractions collectively is required to effectively provide localization information from laboratory studies, and we propose an overall approach to genome-wide subcellular localization characterization that capitalizes on the complementary nature of current laboratory and computational methods.

摘要

背景

确定细菌蛋白质的亚细胞定位(SCL)对于基因组注释、功能预测以及药物或疫苗靶点识别至关重要。亚细胞分级分离技术与最新的蛋白质组学技术相结合,能够从不同的细菌区室中鉴定出大量蛋白质。然而,将像细胞这样的复杂结构分离成几个亚细胞区室并非易事。可能会出现来自其他区室的污染,并且一些蛋白质可能存在于多个定位中。在过去几年中,已经报道了新的计算方法,这些方法现在能够对从基因组推导的蛋白质序列的SCL进行更准确的全基因组分析。有必要将这些计算方法与实验室蛋白质组学方法进行比较,以确定当前用于全基因组定位表征和注释的最有效方法。

结果

在本研究中,对细菌区室的十种亚细胞蛋白质组分析进行了综述。使用PSORTb 2.0版本对这些出版物中报道的蛋白质定位进行计算预测,然后将这些计算预测与蛋白质组学研究确定的定位进行比较。通过使用组合方法,我们能够鉴定出许多污染物和具有双重定位的蛋白质,并且能够更准确地鉴定膜亚蛋白质组。我们的结果使我们能够估计实验室亚蛋白质组研究的精度水平,并且我们在此表明,平均而言,诸如PSORTb之类的最新高精度计算方法现在的错误率低于实验室方法。

结论

我们首次对用于亚细胞定位鉴定的全基因组蛋白质组学和计算方法进行了重点比较,并表明计算方法现在已经达到了超过高通量实验室方法的精度水平。我们注意到,需要对所有细胞级分进行集体分析,以有效地从实验室研究中提供定位信息,并且我们提出了一种全基因组亚细胞定位表征的总体方法,该方法利用了当前实验室和计算方法的互补性质。

相似文献

8
Prediction of protein subcellular localization.蛋白质亚细胞定位预测
Proteins. 2006 Aug 15;64(3):643-51. doi: 10.1002/prot.21018.

引用本文的文献

1
Protein Sorting Prediction.蛋白质分拣预测。
Methods Mol Biol. 2024;2715:27-63. doi: 10.1007/978-1-0716-3445-5_2.
4
Functional assignment to hypothetical proteins in strain Ikeda.对池田菌株中假定蛋白质的功能分配。
Bioinformation. 2022 Mar 31;18(3):188-195. doi: 10.6026/97320630018188. eCollection 2022.

本文引用的文献

5
Type V protein secretion pathway: the autotransporter story.V型蛋白分泌途径:自转运体的故事
Microbiol Mol Biol Rev. 2004 Dec;68(4):692-744. doi: 10.1128/MMBR.68.4.692-744.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验