Wu Albert M, Wu June H, Singh Tanuja, Lai Li-Ju, Yang Zhangung, Herp Anthony
Glyco-Immunochemistry Research Laboratory, Institute of Molecular and Cellular Biology, Chang-Gung University, Kwei-san, Tao-yuan 333, Taiwan.
Mol Immunol. 2006 Apr;43(10):1700-15. doi: 10.1016/j.molimm.2005.09.008. Epub 2005 Nov 8.
Ricinus communis agglutinin (RCA1) is one of the most important applied lectins that has been widely used as a tool to study cell surfaces and to purify glycans. Although the carbohydrate specificity of RCA1 has been described, the information obtained was mainly focused on inhibition of simple Galbeta1-related oligosaccharides and simple clusters. Here, all possible recognition factors of RCA1 of glycan binding were examined by enzyme-linked lectinosorbent (ELLSA) and inhibition assays, using known mammalian Gal/GalNAc carbohydrate structural units and natural polyvalent glycans. Among the glycoproteins (gps) tested and expressed as 50% nanogram inhibition, the high-density polyvalent Galbeta1-4GlcNAc (II) glycotopes occurring in natural gps, such as Pneumococcus type 14 capsular polysaccharide which is composed of repeating poly II residues, resulted in 9.0 x 10(4), 1.5 x 10(5), 2.3 x 10(4) and 2.1 x 10(4)-fold higher affinities to RCA1 than the monomeric Gal, linear I/II and Tri-antennary-II (Tri-II). Of the ligands tested and expressed as nanomoles of 50% inhibition, Tri-II was the best, being about 2, 4, 25.6 and 33.3 times better inhibitor than Di-II, II, I (Galbeta1-3GlcNAc) and Gal, respectively. From the results of this study, it is concluded that: (a) Galbeta1-4GlcNAc and other Galbeta1-related oligosaccharides are essential for lectin binding and their polyvalent form in macromolecules should be the most important recognition factor for RCA1; (b) the combining site of RCA1 may be a groove type, recognizing Galbeta1-4GlcNAc (II) as the major binding site; (c) its combining size may be large enough to accommodate a tetrasaccharide of beta-anomeric Gal at the non-reducing end and most complementary to human blood group I Ma active trisaccharide (Galbeta1-4GlcNAcbeta1-6Gal) and lacto-N-neotetraose (Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc); (d) RCA1 has a preference for the beta-anomer of Gal oligosaccharides with a Galbeta1-4 linkage > Galbeta1-6 > or = Galbeta1-3; (e) configuration of carbon-2, -3 -4 and -6 in Gal are essential for binding; (f) hydrophobic interaction in the vicinity of the binding site useful for sugar accommodation increases affinity. These results should be helpful for understanding the functional role of RCA1 and for characterizing glycotopes of mammalian complex carbohydrates.
蓖麻凝集素(RCA1)是最重要的应用凝集素之一,已被广泛用作研究细胞表面和纯化聚糖的工具。尽管已描述了RCA1的碳水化合物特异性,但所获得的信息主要集中在对简单的β-半乳糖相关寡糖和简单簇的抑制作用上。在此,使用已知的哺乳动物Gal/GalNAc碳水化合物结构单元和天然多价聚糖,通过酶联凝集素吸附测定法(ELLSA)和抑制试验,研究了RCA1对聚糖结合的所有可能识别因子。在所测试并以50%纳克抑制率表示的糖蛋白(gp)中,天然gp中存在的高密度多价β-半乳糖-1,4-N-乙酰葡糖胺(II)糖基表位,如由重复的多聚II残基组成的14型肺炎球菌荚膜多糖,与RCA1的亲和力比单体Gal、线性I/II和三触角-II(Tri-II)分别高9.0×10⁴、1.5×10⁵、2.3×10⁴和2.1×10⁴倍。在所测试并以50%抑制率的纳摩尔数表示的配体中,Tri-II是最好的,分别比二触角-II(Di-II)、II、I(β-半乳糖-1,3-N-乙酰葡糖胺)和Gal作为抑制剂的效果好约2、4、25.6和33.3倍。从本研究结果得出以下结论:(a)β-半乳糖-1,4-N-乙酰葡糖胺和其他β-半乳糖相关寡糖对于凝集素结合至关重要,它们在大分子中的多价形式应该是RCA1最重要的识别因子;(b)RCA1的结合位点可能是凹槽型,将β-半乳糖-1,4-N-乙酰葡糖胺(II)识别为主要结合位点;(c)其结合大小可能足够大,以容纳非还原端的β-异头半乳糖四糖,并且与人类血型I Ma活性三糖(β-半乳糖-1,4-N-乙酰葡糖胺β-1,6-半乳糖)和乳糖-N-新四糖(β-半乳糖-1,4-N-乙酰葡糖胺β-1,3-半乳糖β-1,4-葡糖)最互补;(d)RCA1对具有β-半乳糖-1,4连接的半乳糖寡糖的β-异头体的偏好大于β-半乳糖-1,6>或=β-半乳糖-1,3;(e)半乳糖中碳-2、-3、-4和-6的构型对于结合至关重要;(f)结合位点附近有助于糖容纳的疏水相互作用增加了亲和力。这些结果应有助于理解RCA1的功能作用以及表征哺乳动物复合碳水化合物的糖基表位。