Suppr超能文献

卢卡斯-沃什伯恩方程的分析方法。

Analytical approach for the Lucas-Washburn equation.

作者信息

Hamraoui Ahmed, Nylander Tommy

机构信息

Centre de Recherche en Modélisation Moléculaire, Université de Mons-Hainaut, Bat. Materia Nova Parc Initialis, Rue N. Copernic, Mons, B-7000, Belgium.

出版信息

J Colloid Interface Sci. 2002 Jun 15;250(2):415-21. doi: 10.1006/jcis.2002.8288.

Abstract

Porous media can be characterized by studying the kinetics of liquid rise within the pore spaces. Although porous media generally have a complex structure, they can be modeled as a single, vertical capillary or as an assembly of such capillaries. The main difficulties lie in separately estimating the effective mean radius of the capillaries and the contact angle between the liquid and the pore. In this paper we circumvent these obstacles by exploring another approach and suggest an analytical approach of the classical Lucas-Washburn equation (LWE). Specifically, we consider that the contact angle between the liquid meniscus and the inner surface of the capillary becomes a dynamic contact angle when the liquid front is in movement. It has previously been demonstrated that the resulting time dependence is due to frictional dissipation at the moving wetting front.

摘要

多孔介质可以通过研究孔隙空间内液体上升的动力学来进行表征。尽管多孔介质通常具有复杂的结构,但它们可以被建模为单个垂直毛细管或此类毛细管的集合。主要困难在于分别估计毛细管的有效平均半径以及液体与孔隙之间的接触角。在本文中,我们通过探索另一种方法来规避这些障碍,并提出了经典卢卡斯 - 沃什伯恩方程(LWE)的一种解析方法。具体而言,我们认为当液面前沿移动时,液体弯月面与毛细管内表面之间的接触角会变成动态接触角。此前已经证明,由此产生的时间依赖性是由于移动的润湿前沿的摩擦耗散所致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验