Hermann M, Pirkebner D, Draxl A, Margreiter R, Hengster P
KMT-ZIT Laboratory, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria.
Transplant Proc. 2005 Oct;37(8):3409-11. doi: 10.1016/j.transproceed.2005.09.076.
Pancreatic islet cell transplantation is a promising approach to restoring normoglycemia in diabetic patients. The outcome of islet transplantation is uncertain for two reasons: The quality of isolated islets is still poorly defined and the functional potential of transplanted islets is difficult to predict. Therefore, one of the primary challenges in islet transplantation is to identify and understand the changes taking place in islets after isolation and culture. Description of such changes in living islet cells offers insights not achievable by use of fixed-cell techniques. Three fluorescent dyes, dichlorodihydrofluorescein diacetate, tetramethylrhodamine methyl ester perchlorate (TMRM), and fluorescent wheat germ agglutinin, were used to assess either overall oxidative stress, time-dependent mitochondrial membrane potentials, or localization of oligosaccharides. Confocal microscopy was performed with a microlens-enhanced Nipkow disk-based confocal system mounted on an inverse microscope. We were able to show differences in the amount of oligosaccharides on the cell surface between endocrine and exocrine cells in freshly isolated human islet preparations. The study of the mitochondrial membrane potential via TMRM proved to be useful to early identification of damaged or stressed cells. Thus a combination of fluorescent dyes as subcellular markers, with a powerful live confocal imaging system may be of great value to isolation and culture.
胰岛细胞移植是恢复糖尿病患者正常血糖水平的一种很有前景的方法。胰岛移植的结果不确定,原因有两个:分离出的胰岛质量仍难以界定,且移植胰岛的功能潜力难以预测。因此,胰岛移植的主要挑战之一是识别和了解胰岛在分离和培养后发生的变化。对活胰岛细胞中此类变化的描述提供了使用固定细胞技术无法获得的见解。使用三种荧光染料,即二氯二氢荧光素二乙酸酯、高氯酸四甲基罗丹明甲酯(TMRM)和荧光麦胚凝集素,来评估整体氧化应激、时间依赖性线粒体膜电位或寡糖的定位。使用安装在倒置显微镜上的基于微透镜增强尼普科夫盘的共聚焦系统进行共聚焦显微镜检查。我们能够显示新鲜分离的人胰岛制剂中内分泌细胞和外分泌细胞表面寡糖数量的差异。通过TMRM对线粒体膜电位的研究被证明有助于早期识别受损或应激细胞。因此,将荧光染料作为亚细胞标记物与强大的活细胞共聚焦成像系统相结合,可能对分离和培养具有巨大价值。