Daniel Swarovski Research Laboratory, Center of Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innrain, Innsbruck, Austria.
J Cell Mol Med. 2010 Jan;14(1-2):417-25. doi: 10.1111/j.1582-4934.2009.00750.x. Epub 2009 Mar 27.
Mitochondrial morphology and intracellular organization are tightly controlled by the processes of mitochondrial fission-fusion. Moreover, mitochondrial movement and redistribution provide a local ATP supply at cellular sites of particular demands. Here we analysed mitochondrial dynamics in isolated primary human pancreatic cells. Using real time confocal microscopy and mitochondria-specific fluorescent probes tetramethylrhodamine methyl ester and MitoTracker Green we documented complex and novel patterns of spatial and temporal organization of mitochondria, mitochondrial morphology and motility. The most commonly observed types of mitochondrial dynamics were (i) fast fission and fusion; (ii) small oscillating movements of the mitochondrial network; (iii) larger movements, including filament extension, retraction, fast (0.1-0.3 mum/sec.) and frequent oscillating (back and forth) branching in the mitochondrial network; (iv) as well as combinations of these actions and (v) long-distance intracellular translocation of single spherical mitochondria or separated mitochondrial filaments with velocity up to 0.5 mum/sec. Moreover, we show here for the first time, a formation of unusual mitochondrial shapes like rings, loops, and astonishingly even knots created from one or more mitochondrial filaments. These data demonstrate the presence of extensive heterogeneity in mitochondrial morphology and dynamics in living cells under primary culture conditions. In summary, this study reports new patterns of morphological changes and dynamic motion of mitochondria in human pancreatic cells, suggesting an important role of integrations of mitochondria with other intracellular structures and systems.
线粒体的形态和细胞内组织是由线粒体分裂-融合过程紧密控制的。此外,线粒体的运动和再分布为细胞中特定需求部位提供局部 ATP 供应。在这里,我们分析了分离的原代人胰腺细胞中的线粒体动力学。使用实时共聚焦显微镜和线粒体特异性荧光探针四甲基罗丹明甲酯和 MitoTracker Green,我们记录了线粒体的时空组织、线粒体形态和运动的复杂和新颖模式。最常见的线粒体动力学类型是:(i)快速分裂和融合;(ii)线粒体网络的小振荡运动;(iii)较大的运动,包括丝状延伸、回缩、快速(0.1-0.3 μm/sec.)和频繁的振荡(前后)分支的线粒体网络;(iv)以及这些动作的组合;(v)单个球形线粒体或分离的线粒体丝状的长距离细胞内转运,速度高达 0.5 μm/sec。此外,我们在这里首次展示了线粒体形成不寻常的形状,如环、环和惊人的甚至结,由一个或多个线粒体丝状形成。这些数据表明,在原代培养条件下,活细胞中线粒体形态和动力学存在广泛的异质性。总之,这项研究报告了人胰腺细胞中线粒体形态和动态运动的新模式,表明线粒体与其他细胞内结构和系统的整合具有重要作用。