Suppr超能文献

茎部蛋白在高等植物茎-根干物质分配中的作用。

A role for shoot protein in shoot-root dry matter allocation in higher plants.

作者信息

Andrews M, Raven J A, Lea P J, Sprent J I

机构信息

School of Sciences, University of Sunderland, Sunderland SR1 3SD, UK.

出版信息

Ann Bot. 2006 Jan;97(1):3-10. doi: 10.1093/aob/mcj009. Epub 2005 Nov 18.

Abstract

BACKGROUND AND AIMS

It is stated in many recent publications that nitrate (NO3-) acts as a signal to regulate dry matter partitioning between the shoot and root of higher plants. Here we challenge this hypothesis and present evidence for the viewpoint that NO3- and other environmental effects on the shoot:root dry weight ratio (S:R) of higher plants are often related mechanistically to changes in shoot protein concentration.

METHODS

The literature on environmental effects on S:R is reviewed, focusing on relationships between S:R, growth and leaf NO3- and protein concentrations. A series of experiments carried out to test the proposal that S:R is dependent on shoot protein concentration is highlighted and new data are presented for tobacco (Nicotiana tabacum). KEY RESULTS/EVIDENCE: Results from the literature and new data for tobacco show that S:R and leaf NO3- concentration are not significantly correlated over a range of environmental conditions. A mechanism involving the relative availability of C and N substrates for growth in shoots can explain how shoot protein concentration can influence shoot growth and hence root growth and S:R. Generally, results in the literature are compatible with the hypothesis that macronutrients, water, irradiance and CO2 affect S:R through changes in shoot protein concentration. In detailed studies on several species, including tobacco, a linear regression model incorporating leaf soluble protein concentration and plant dry weight could explain the greater proportion of the variation in S:R within and between treatments over a wide range of conditions.

CONCLUSIONS

It is concluded that if NO3- can influence the S:R of higher plants, it does so only over a narrow range of conditions. Evidence is strong that environmental effects on S:R are often related mechanistically to their effects on shoot protein concentration.

摘要

背景与目的

近期许多出版物指出,硝酸盐(NO3-)作为一种信号,可调节高等植物地上部与根部之间的干物质分配。在此,我们对这一假说提出质疑,并为以下观点提供证据:NO3-以及其他环境因素对高等植物地上部与根部干重比(S:R)的影响,通常在机制上与地上部蛋白质浓度的变化相关。

方法

回顾了关于环境对S:R影响的文献,重点关注S:R、生长以及叶片NO3-和蛋白质浓度之间的关系。突出了为检验S:R依赖于地上部蛋白质浓度这一观点而开展的一系列实验,并展示了烟草(Nicotiana tabacum)的新数据。关键结果/证据:文献结果和烟草的新数据表明,在一系列环境条件下,S:R与叶片NO3-浓度并无显著相关性。一种涉及地上部生长中碳和氮底物相对可利用性的机制,可以解释地上部蛋白质浓度如何影响地上部生长,进而影响根部生长和S:R。总体而言,文献中的结果与以下假说相符:大量元素、水分、光照和二氧化碳通过地上部蛋白质浓度的变化影响S:R。在包括烟草在内的多个物种的详细研究中,一个纳入叶片可溶性蛋白质浓度和植物干重的线性回归模型,能够解释在广泛条件下不同处理内部和之间S:R变化的较大比例。

结论

得出的结论是,如果NO3-能够影响高等植物的S:R,那么它也仅在狭窄的条件范围内才能做到。有充分证据表明,环境对S:R的影响通常在机制上与其对地上部蛋白质浓度的影响相关。

相似文献

1
A role for shoot protein in shoot-root dry matter allocation in higher plants.
Ann Bot. 2006 Jan;97(1):3-10. doi: 10.1093/aob/mcj009. Epub 2005 Nov 18.
2
Effects of root-zone acidity on utilization of nitrate and ammonium in tobacco plants.
J Plant Nutr. 1989;12(7):811-26. doi: 10.1080/01904168909363995.
5
Dissecting the effects of nitrate, sucrose and osmotic potential on Arabidopsis root and shoot system growth in laboratory assays.
Philos Trans R Soc Lond B Biol Sci. 2012 Jun 5;367(1595):1489-500. doi: 10.1098/rstb.2011.0230.
7
Rapid effects of nitrogen form on leaf morphogenesis in tobacco.
J Exp Bot. 2000 Feb;51(343):227-37. doi: 10.1093/jexbot/51.343.227.

引用本文的文献

1
Protein patterns and their association with photosynthetic pigment content, agronomic behavior, and origin of purslane accessions ( L.).
BioTechnologia (Pozn). 2021 Sep 30;102(3):245-255. doi: 10.5114/bta.2021.108721. eCollection 2021.
3
Effects of Nitrogen Forms on the Growth and Nitrogen Accumulation in Seedlings.
Plants (Basel). 2022 Aug 10;11(16):2086. doi: 10.3390/plants11162086.
5
Effects of Light, N and Defoliation on Biomass Allocation in .
Plants (Basel). 2021 Aug 26;10(9):1783. doi: 10.3390/plants10091783.
9
Amino Acids and Ribose: Drivers of Protein and RNA Fermentation by Ingested Bacteria of a Primitive Gut Ecosystem.
Appl Environ Microbiol. 2019 Sep 17;85(19). doi: 10.1128/AEM.01297-19. Print 2019 Oct 1.
10
Maize plant nitrogen uptake dynamics at limited irrigation water and nitrogen.
Environ Sci Pollut Res Int. 2017 Jan;24(3):2549-2557. doi: 10.1007/s11356-016-8031-0. Epub 2016 Nov 8.

本文引用的文献

1
The Influence of Plant Nutrition on Biomass Allocation.
Ecol Appl. 1991 May;1(2):168-174. doi: 10.2307/1941809.
2
4
Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis.
Plant Physiol. 2004 Sep;136(1):2512-22. doi: 10.1104/pp.104.044610. Epub 2004 Aug 27.
5
Nitrification by plants that also fix nitrogen.
Nature. 2004 Jul 1;430(6995):98-101. doi: 10.1038/nature02635.
6
Root : shoot ratios, optimization and nitrogen productivity.
Ann Bot. 2003 Dec;92(6):795-800. doi: 10.1093/aob/mcg203. Epub 2003 Oct 17.
7
Can plants rely on nitrate?
Trends Plant Sci. 2003 Jul;8(7):314-5; author reply 315-6. doi: 10.1016/S1360-1385(03)00125-0.
9
Markers and signals associated with nitrogen assimilation in higher plants.
J Exp Bot. 2003 Jan;54(382):585-93. doi: 10.1093/jxb/erg053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验