Varghese Ann, Liu Jie, Patterson Tucker A, Hong Huixiao
National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
Molecules. 2025 Jul 16;30(14):2985. doi: 10.3390/molecules30142985.
Coronavirus disease 2019 (COVID-19) produced devastating health and economic impacts worldwide. While progress has been made in vaccine development, effective antiviral treatments remain limited, particularly those targeting the papain-like protease (PLpro) of SARS-CoV-2. PLpro plays a key role in viral replication and immune evasion, making it an attractive yet underexplored target for drug repurposing. In this study, we combined machine learning, molecular dynamics, and molecular docking to identify potential PLpro inhibitors in existing drugs. We performed long-timescale molecular dynamics simulations on PLpro-ligand complexes at two known binding sites, followed by structural clustering to capture representative structures. These were used for molecular docking, including a training set of 127 compounds and a library of 1107 FDA-approved drugs. A random forest model, trained on the docking scores of the representative conformations, yielded 76.4% accuracy via leave-one-out cross-validation. Applying the model to the drug library and filtering results based on prediction confidence and the applicability domain, we identified five drugs as promising candidates for repurposing for COVID-19 treatment. Our findings demonstrate the power of integrating computational modeling with machine learning to accelerate drug repurposing against emerging viral targets.
2019冠状病毒病(COVID-19)在全球范围内造成了毁灭性的健康和经济影响。虽然疫苗研发取得了进展,但有效的抗病毒治疗方法仍然有限,尤其是针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)木瓜样蛋白酶(PLpro)的治疗方法。PLpro在病毒复制和免疫逃逸中起关键作用,使其成为药物重新利用的一个有吸引力但尚未充分探索的靶点。在本研究中,我们结合机器学习、分子动力学和分子对接,在现有药物中识别潜在的PLpro抑制剂。我们在两个已知结合位点对PLpro-配体复合物进行了长时间尺度的分子动力学模拟,随后进行结构聚类以捕获代表性结构。这些结构用于分子对接,包括一个由127种化合物组成的训练集和一个包含1107种美国食品药品监督管理局(FDA)批准药物的文库。基于代表性构象的对接分数训练的随机森林模型,通过留一法交叉验证获得了76.4%的准确率。将该模型应用于药物文库,并根据预测置信度和适用域对结果进行筛选,我们确定了五种药物作为COVID-19治疗重新利用的有希望的候选药物。我们的研究结果证明了将计算建模与机器学习相结合以加速针对新兴病毒靶点的药物重新利用的能力。