Marion Sébastien, Oakley Robert H, Kim Kyeong-Man, Caron Marc G, Barak Larry S
Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
J Biol Chem. 2006 Feb 3;281(5):2932-8. doi: 10.1074/jbc.M508074200. Epub 2005 Nov 30.
beta-Arrestins have been shown to inhibit competitively G protein-dependent signaling and to mediate endocytosis for many of the hundreds of nonvisual rhodopsin family G protein-coupled receptors (GPCR). An open question of fundamental importance concerning the regulation of signal transduction of several hundred rhodopsin-like GPCRs is how these receptors of limited sequence homology, when considered in toto, can all recruit and activate the two highly conserved beta-arrestin proteins as part of their signaling/desensitization process. Although the serine and threonine residues that form GPCR kinase phosphorylation sites are common beta-arrestin-associated receptor determinants regulating receptor desensitization and internalization, the agonist-activated conformation of a GPCR probably reveals the most fundamental determinant mediating the GPCR and arrestin interaction. Here we identified a beta-arrestin binding determinant common to the rhodopsin family GPCRs formed from the proximal 10 residues of the second intracellular loop. We demonstrated by both gain and loss of function studies for the serotonin 2C, beta2-adrenergic, alpha2a)adrenergic, and neuropeptide Y type 2 receptors that the highly conserved amino acids, proline and alanine, naturally occurring in rhodopsin family receptors six residues distal to the highly conserved second loop DRY motif regulate beta-arrestin binding and beta-arrestin-mediated internalization. In particular, as demonstrated for the beta2 AR, this occurs independently of changes in GPCR kinase phosphorylation. These results suggest that a GPCR conformation directed by the second intracellular loop, likely using the loop itself as a binding patch, may function as a switch for transitioning beta-arrestin from its inactive form to its active receptor-binding state.
β-抑制蛋白已被证明可竞争性抑制G蛋白依赖性信号传导,并介导数百种非视觉视紫红质家族G蛋白偶联受体(GPCR)中的许多受体的内吞作用。关于数百种视紫红质样GPCR信号转导调节的一个至关重要的开放性问题是,当整体考虑时,这些序列同源性有限的受体如何能够全部募集并激活两种高度保守的β-抑制蛋白,作为其信号传导/脱敏过程的一部分。尽管形成GPCR激酶磷酸化位点的丝氨酸和苏氨酸残基是调节受体脱敏和内化的常见β-抑制蛋白相关受体决定因素,但GPCR的激动剂激活构象可能揭示了介导GPCR与抑制蛋白相互作用的最基本决定因素。在这里,我们鉴定了视紫红质家族GPCR共有的一个β-抑制蛋白结合决定因素,它由第二个细胞内环的近端10个残基形成。我们通过对5-羟色胺2C、β2-肾上腺素能、α2a-肾上腺素能和神经肽Y 2型受体进行功能获得和功能丧失研究证明,视紫红质家族受体中自然存在的高度保守氨基酸脯氨酸和丙氨酸,位于高度保守的第二个环DRY基序下游六个残基处,调节β-抑制蛋白结合和β-抑制蛋白介导的内吞作用。特别是,如对β2肾上腺素能受体(β2 AR)所证明的,这一过程独立于GPCR激酶磷酸化的变化而发生。这些结果表明,由第二个细胞内环指导的GPCR构象,可能利用该环本身作为结合区域,可能作为一个开关,将β-抑制蛋白从其无活性形式转变为其活性受体结合状态。