Suppr超能文献

评估医学中用于分类和预测的技术。

Evaluating technologies for classification and prediction in medicine.

作者信息

Pepe M S

机构信息

Department of Biostatistics, University of Washington, Seattle, 98109-1024, USA.

出版信息

Stat Med. 2005 Dec 30;24(24):3687-96. doi: 10.1002/sim.2431.

Abstract

Modern technologies promise to provide new ways of diagnosing disease, detecting subclinical disease, predicting prognosis, selecting patient specific treatment, identifying subjects at risk for disease, and so forth. Advances in genomics, proteomics and imaging modalities in particular hold great potential for assisting with classification/prediction in medicine. Before a classifier can be adopted for routine use in health care, its classification accuracy must be determined. Standards for evaluating new clinical classifiers however, lag far behind the well established standards that exist for evaluating new clinical treatments. In this paper, we discuss a phased approach to developing a new classifier (or biomarker). It mirrors the internationally established phase 1-2-3 paradigm for therapeutic drugs. The defined phases lead to a logical sequence of studies for classifier development. We emphasize that evaluating classification accuracy is fundamentally different from simply establishing association with outcome. Therefore, study objectives and designs differ from the familiar methods of clinical trials. We discuss these briefly for each phase.Finally, we argue that classifier development requires some rethinking of traditional data analysis techniques. As an example we show that maximizing the likelihood function to fit a logistic regression model to multiple predictors, can yield a poor classifier. Instead we demonstrate that an approach that maximizes an alternative objective function characterizing classification accuracy performs better.

摘要

现代技术有望提供诊断疾病、检测亚临床疾病、预测预后、选择针对患者个体的治疗方法、识别疾病风险个体等新途径。尤其是基因组学、蛋白质组学和成像技术的进步,在协助医学分类/预测方面具有巨大潜力。在分类器能够被应用于医疗保健的常规使用之前,必须确定其分类准确性。然而,评估新的临床分类器的标准远远落后于评估新的临床治疗方法所存在的成熟标准。在本文中,我们讨论了开发新分类器(或生物标志物)的分阶段方法。它反映了国际上确立的治疗药物1-2-3期范式。所定义的阶段为分类器开发带来了一系列合乎逻辑的研究。我们强调,评估分类准确性与简单地建立与结果的关联有着根本的不同。因此,研究目标和设计与熟悉的临床试验方法不同。我们针对每个阶段简要讨论这些内容。最后,我们认为分类器开发需要对传统数据分析技术进行一些重新思考。例如,我们表明,将似然函数最大化以将逻辑回归模型拟合到多个预测变量上,可能会产生一个较差的分类器。相反,我们证明,最大化表征分类准确性的替代目标函数的方法表现更好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验