Nalam Vamsi J, Vales M Isabel, Watson Christy J W, Kianian Shahryar F, Riera-Lizarazu Oscar
Department of Crop and Soil Science, Oregon State University, 107 Crop Science Bldg, Corvallis, OR 97331, USA.
Theor Appl Genet. 2006 Jan;112(2):373-81. doi: 10.1007/s00122-005-0140-y. Epub 2005 Nov 19.
The mature spike rachis of wild emmer [Triticum turgidum L. ssp. dicoccoides (Körn. ex Asch. and Graebner) Thell.] disarticulates spontaneously between each spikelet leading to the dispersion of wedge-type diaspores. By contrast, the spike rachis of domesticated emmer (Triticum turgidum L. ssp. turgidum) fails to disarticulate and remains intact until it is harvested. This major distinguishing feature between wild and domesticated emmer is controlled by two major genes, brittle rachis 2 (Br-A2) and brittle rachis 3 (Br-A3) on the short arms of chromosomes 3A and 3B, respectively. Because of their biological and agricultural importance, a map-based analysis of these genes was undertaken. Using two recombinant inbred chromosome line (RICL) populations, Br-A2, on chromosome 3A, was localized to a approximately 11-cM region between Xgwm2 and a cluster of linked loci (Xgwm666.1, Xbarc19, Xcfa2164, Xbarc356, and Xgwm674), whereas Br-A3, on chromosome 3B, was localized to a approximately 24-cM interval between Xbarc218 and Xwmc777. Comparative mapping analyses suggested that both Br-A2 and Br-A3 were present in homologous regions on chromosomes 3A and 3B, respectively. Furthermore, Br-A2 and Br-A3 from wheat and Btr1/Btr2 on chromosome 3H of barley (Hordeum vulgare L.) also were homologous suggesting that the location of major determinants of the brittle rachis trait in these species has been conserved. On the other hand, brittle rachis loci of wheat and barley, and a shattering locus on rice chromosome 1 did not appear to be orthologous. Linkage and deletion-based bin mapping comparisons suggested that Br-A2 and Br-A3 may reside in chromosomal areas where the estimated frequency of recombination was approximately 4.3 Mb/cM. These estimates indicated that the cloning of Br-A2 and Br-A3 using map-based methods would be extremely challenging.
野生二粒小麦[普通小麦(Triticum turgidum L.)圆锥小麦亚种(Triticum turgidum L. ssp. dicoccoides)(Körn. ex Asch. and Graebner)Thell.]成熟的穗轴在每个小穗之间会自发脱节,导致楔形传播体分散。相比之下,驯化二粒小麦(普通小麦圆锥小麦亚种)的穗轴不会脱节,在收获前一直保持完整。野生和驯化二粒小麦之间的这一主要区别特征由两个主要基因控制,分别是位于3A染色体短臂上的脆轴2(Br-A2)和位于3B染色体短臂上的脆轴3(Br-A3)。鉴于它们在生物学和农业上的重要性,对这些基因进行了基于图谱的分析。利用两个重组自交染色体系(RICL)群体,位于3A染色体上的Br-A2被定位到Xgwm2和一组连锁位点(Xgwm666.1、Xbarc19、Xcfa2164、Xbarc356和Xgwm674)之间约11厘摩的区域,而位于3B染色体上的Br-A3被定位到Xbarc218和Xwmc777之间约24厘摩的区间。比较图谱分析表明,Br-A2和Br-A3分别存在于3A和3B染色体的同源区域。此外,小麦中的Br-A2和Br-A3与大麦(Hordeum vulgare L.)3H染色体上的Btr1/Btr2也同源,这表明这些物种中脆轴性状主要决定因素的位置是保守的。另一方面,小麦和大麦的脆轴位点以及水稻1号染色体上的一个落粒位点似乎不是直系同源的。基于连锁和缺失的染色体片段图谱比较表明,Br-A2和Br-A3可能位于估计重组频率约为4.3兆碱基/厘摩的染色体区域。这些估计表明,使用基于图谱的方法克隆Br-A2和Br-A3将极具挑战性。