Suppr超能文献

用γ亚基缺陷型F1-ATP酶在小鼠线粒体中形成充满能量的内膜。

Formation of an energized inner membrane in mitochondria with a gamma-deficient F1-ATPase.

作者信息

Smith Christopher P, Thorsness Peter E

机构信息

Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.

出版信息

Eukaryot Cell. 2005 Dec;4(12):2078-86. doi: 10.1128/EC.4.12.2078-2086.2005.

Abstract

Eukaryotic cells require mitochondrial compartments for viability. However, the budding yeast Saccharomyces cerevisiae is able to survive when mitochondrial DNA suffers substantial deletions or is completely absent, so long as a sufficient mitochondrial inner membrane potential is generated. In the absence of functional mitochondrial DNA, and consequently a functional electron transport chain and F(1)F(o)-ATPase, the essential electrical potential is maintained by the electrogenic exchange of ATP(4-) for ADP(3-) through the adenine nucleotide translocator. An essential aspect of this electrogenic process is the conversion of ATP(4-) to ADP(3-) in the mitochondrial matrix, and the nuclear-encoded subunits of F(1)-ATPase are hypothesized to be required for this process in vivo. Deletion of ATP3, the structural gene for the gamma subunit of the F(1)-ATPase, causes yeast to quantitatively lose mitochondrial DNA and grow extremely slowly, presumably by interfering with the generation of an energized inner membrane. A spontaneous suppressor of this slow-growth phenotype was found to convert a conserved glycine to serine in the beta subunit of F(1)-ATPase (atp2-227). This mutation allowed substantial ATP hydrolysis by the F(1)-ATPase even in the absence of the gamma subunit, enabling yeast to generate a twofold greater inner membrane potential in response to ATP compared to mitochondria isolated from yeast lacking the gamma subunit and containing wild-type beta subunits. Analysis of the suppressing mutation by blue native polyacrylamide gel electrophoresis also revealed that the alpha(3)beta(3) heterohexamer can form in the absence of the gamma subunit.

摘要

真核细胞需要线粒体区室来维持生存能力。然而,出芽酵母酿酒酵母在线粒体DNA遭受大量缺失或完全缺失时仍能存活,只要能产生足够的线粒体内膜电位即可。在缺乏功能性线粒体DNA的情况下,因而也就缺乏功能性电子传递链和F(1)F(o)-ATP合酶时,通过腺嘌呤核苷酸转位酶将ATP(4-)与ADP(3-)进行电致交换来维持必需的电位。这一电致过程的一个重要方面是线粒体基质中ATP(4-)向ADP(3-)的转化,并且推测F(1)-ATP合酶的核编码亚基在体内这一过程中是必需的。F(1)-ATP合酶γ亚基的结构基因ATP3的缺失会导致酵母定量地丢失线粒体DNA并生长极其缓慢,大概是通过干扰内膜的能量化生成。发现这种缓慢生长表型的一个自发抑制子能使F(1)-ATP合酶β亚基(atp2-227)中一个保守的甘氨酸转化为丝氨酸。即使在没有γ亚基的情况下,这种突变也能使F(1)-ATP合酶大量水解ATP,与从缺乏γ亚基且含有野生型β亚基的酵母中分离得到的线粒体相比,使酵母对ATP产生的内膜电位提高两倍。通过蓝色天然聚丙烯酰胺凝胶电泳对抑制突变进行分析还表明,在没有γ亚基的情况下α(3)β(3)异源六聚体也能形成。

相似文献

1
Formation of an energized inner membrane in mitochondria with a gamma-deficient F1-ATPase.
Eukaryot Cell. 2005 Dec;4(12):2078-86. doi: 10.1128/EC.4.12.2078-2086.2005.
3
Genetic and biochemical basis for viability of yeast lacking mitochondrial genomes.
Genetics. 2002 Dec;162(4):1595-604. doi: 10.1093/genetics/162.4.1595.
7
Consequences of the pathogenic T9176C mutation of human mitochondrial DNA on yeast mitochondrial ATP synthase.
Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1105-12. doi: 10.1016/j.bbabio.2009.12.022. Epub 2010 Jan 4.
8
ATP synthase of yeast mitochondria. Isolation of subunit j and disruption of the ATP18 gene.
J Biol Chem. 1999 Jan 1;274(1):36-40. doi: 10.1074/jbc.274.1.36.
9
Quantitation and origin of the mitochondrial membrane potential in human cells lacking mitochondrial DNA.
Eur J Biochem. 1999 May;262(1):108-16. doi: 10.1046/j.1432-1327.1999.00350.x.

引用本文的文献

1
The metabolic growth limitations of petite cells lacking the mitochondrial genome.
Nat Metab. 2021 Nov;3(11):1521-1535. doi: 10.1038/s42255-021-00477-6. Epub 2021 Nov 18.
2
Loss of major nutrient sensing and signaling pathways suppresses starvation lethality in electron transport chain mutants.
Mol Biol Cell. 2021 Dec 1;32(22):ar39. doi: 10.1091/mbc.E21-06-0314. Epub 2021 Oct 20.
3
Ribosome-Targeting Antibiotics Impair T Cell Effector Function and Ameliorate Autoimmunity by Blocking Mitochondrial Protein Synthesis.
Immunity. 2021 Jan 12;54(1):68-83.e6. doi: 10.1016/j.immuni.2020.11.001. Epub 2020 Nov 24.
6
Potential anti-aging agents suppress the level of constitutive mTOR- and DNA damage- signaling.
Aging (Albany NY). 2012 Dec;4(12):952-65. doi: 10.18632/aging.100521.
7
Hsp90 and mitochondrial proteases Yme1 and Yta10/12 participate in ATP synthase assembly in Saccharomyces cerevisiae.
Mitochondrion. 2011 Jul;11(4):587-600. doi: 10.1016/j.mito.2011.03.008. Epub 2011 Mar 23.
8
ATP synthase: from single molecule to human bioenergetics.
Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(7):667-93. doi: 10.2183/pjab.86.667.
9
Phosphorylation of the F(1)F(o) ATP synthase beta subunit: functional and structural consequences assessed in a model system.
Circ Res. 2010 Feb 19;106(3):504-13. doi: 10.1161/CIRCRESAHA.109.214155. Epub 2009 Dec 24.

本文引用的文献

1
The structure of bovine F1-ATPase inhibited by ADP and beryllium fluoride.
EMBO J. 2004 Jul 21;23(14):2734-44. doi: 10.1038/sj.emboj.7600293. Epub 2004 Jul 1.
3
Genetic and biochemical basis for viability of yeast lacking mitochondrial genomes.
Genetics. 2002 Dec;162(4):1595-604. doi: 10.1093/genetics/162.4.1595.
5
Partial assembly of the yeast mitochondrial ATP synthase.
J Bioenerg Biomembr. 2000 Aug;32(4):391-400. doi: 10.1023/a:1005532104617.
7
Mutant residues suppressing rho(0)-lethality in Kluyveromyces lactis occur at contact sites between subunits of F(1)-ATPase.
Biochim Biophys Acta. 2000 Mar 16;1478(1):125-37. doi: 10.1016/s0167-4838(00)00003-0.
10
Functional staging of ADP/ATP carrier translocation across the outer mitochondrial membrane.
J Biol Chem. 1999 Jul 16;274(29):20619-27. doi: 10.1074/jbc.274.29.20619.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验