Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.
Biognosys AG, Schlieren, Switzerland.
Nat Metab. 2021 Nov;3(11):1521-1535. doi: 10.1038/s42255-021-00477-6. Epub 2021 Nov 18.
Eukaryotic cells can survive the loss of their mitochondrial genome, but consequently suffer from severe growth defects. 'Petite yeasts', characterized by mitochondrial genome loss, are instrumental for studying mitochondrial function and physiology. However, the molecular cause of their reduced growth rate remains an open question. Here we show that petite cells suffer from an insufficient capacity to synthesize glutamate, glutamine, leucine and arginine, negatively impacting their growth. Using a combination of molecular genetics and omics approaches, we demonstrate the evolution of fast growth overcomes these amino acid deficiencies, by alleviating a perturbation in mitochondrial iron metabolism and by restoring a defect in the mitochondrial tricarboxylic acid cycle, caused by aconitase inhibition. Our results hence explain the slow growth of mitochondrial genome-deficient cells with a partial auxotrophy in four amino acids that results from distorted iron metabolism and an inhibited tricarboxylic acid cycle.
真核细胞可以在失去线粒体基因组的情况下存活,但随后会遭受严重的生长缺陷。以线粒体基因组丢失为特征的“ petite 酵母”对于研究线粒体功能和生理学至关重要。然而,其生长速度降低的分子原因仍然是一个悬而未决的问题。在这里,我们表明 petite 细胞合成谷氨酸、谷氨酰胺、亮氨酸和精氨酸的能力不足,从而严重影响其生长。通过结合分子遗传学和组学方法,我们证明了快速生长的进化可以克服这些氨基酸缺乏,方法是减轻线粒体铁代谢的干扰,并通过恢复因 aconitase 抑制而导致的线粒体三羧酸循环缺陷。因此,我们的结果解释了由于铁代谢紊乱和三羧酸循环抑制导致四氨基酸部分营养缺陷的线粒体基因组缺失细胞生长缓慢的原因。