Suppr超能文献

缺乏线粒体基因组的 petite 细胞的代谢生长限制。

The metabolic growth limitations of petite cells lacking the mitochondrial genome.

机构信息

Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.

Biognosys AG, Schlieren, Switzerland.

出版信息

Nat Metab. 2021 Nov;3(11):1521-1535. doi: 10.1038/s42255-021-00477-6. Epub 2021 Nov 18.

Abstract

Eukaryotic cells can survive the loss of their mitochondrial genome, but consequently suffer from severe growth defects. 'Petite yeasts', characterized by mitochondrial genome loss, are instrumental for studying mitochondrial function and physiology. However, the molecular cause of their reduced growth rate remains an open question. Here we show that petite cells suffer from an insufficient capacity to synthesize glutamate, glutamine, leucine and arginine, negatively impacting their growth. Using a combination of molecular genetics and omics approaches, we demonstrate the evolution of fast growth overcomes these amino acid deficiencies, by alleviating a perturbation in mitochondrial iron metabolism and by restoring a defect in the mitochondrial tricarboxylic acid cycle, caused by aconitase inhibition. Our results hence explain the slow growth of mitochondrial genome-deficient cells with a partial auxotrophy in four amino acids that results from distorted iron metabolism and an inhibited tricarboxylic acid cycle.

摘要

真核细胞可以在失去线粒体基因组的情况下存活,但随后会遭受严重的生长缺陷。以线粒体基因组丢失为特征的“ petite 酵母”对于研究线粒体功能和生理学至关重要。然而,其生长速度降低的分子原因仍然是一个悬而未决的问题。在这里,我们表明 petite 细胞合成谷氨酸、谷氨酰胺、亮氨酸和精氨酸的能力不足,从而严重影响其生长。通过结合分子遗传学和组学方法,我们证明了快速生长的进化可以克服这些氨基酸缺乏,方法是减轻线粒体铁代谢的干扰,并通过恢复因 aconitase 抑制而导致的线粒体三羧酸循环缺陷。因此,我们的结果解释了由于铁代谢紊乱和三羧酸循环抑制导致四氨基酸部分营养缺陷的线粒体基因组缺失细胞生长缓慢的原因。

相似文献

1
The metabolic growth limitations of petite cells lacking the mitochondrial genome.
Nat Metab. 2021 Nov;3(11):1521-1535. doi: 10.1038/s42255-021-00477-6. Epub 2021 Nov 18.
4
The Goldilocks effect of respiration on canavanine tolerance in Saccharomyces cerevisiae.
Curr Genet. 2019 Oct;65(5):1199-1215. doi: 10.1007/s00294-019-00974-y. Epub 2019 Apr 22.
5
Division of mitochondria requires a novel DNM1-interacting protein, Net2p.
Mol Biol Cell. 2001 Feb;12(2):309-21. doi: 10.1091/mbc.12.2.309.
7
Mitochondrial nucleoids undergo remodeling in response to metabolic cues.
J Cell Sci. 2008 Jun 1;121(11):1861-8. doi: 10.1242/jcs.028605. Epub 2008 May 13.
8
Exploring mitochondrial evolution and metabolism organization principles by comparative analysis of metabolic networks.
Genomics. 2010 Jun;95(6):339-44. doi: 10.1016/j.ygeno.2010.03.006. Epub 2010 Mar 15.
10
Monitoring of Iron Depletion-Induced Mitophagy in Pathogenic Yeast.
Methods Mol Biol. 2018;1759:161-172. doi: 10.1007/7651_2017_40.

引用本文的文献

1
Inheritance bias of deletion-harbouring mtDNA in yeast: The role of copy number and intracellular selection.
PLoS Genet. 2025 Jun 24;21(6):e1011737. doi: 10.1371/journal.pgen.1011737. eCollection 2025 Jun.
2
5
Loss of mitochondrial DNA is associated with reduced DNA content variability in .
MicroPubl Biol. 2024 Mar 11;2024. doi: 10.17912/micropub.biology.001117. eCollection 2024.
7
Gene dosage adaptations to mtDNA depletion and mitochondrial protein stress in budding yeast.
G3 (Bethesda). 2024 Feb 7;14(2). doi: 10.1093/g3journal/jkad272.
8
Membrane transporters in cell physiology, cancer metabolism and drug response.
Dis Model Mech. 2023 Nov 1;16(11). doi: 10.1242/dmm.050404. Epub 2023 Dec 1.
9
Measuring effect of mutations & conditions on microbial respiratory rates.
J Microbiol Methods. 2024 Jan;216:106864. doi: 10.1016/j.mimet.2023.106864. Epub 2023 Nov 27.
10

本文引用的文献

1
Growth Inhibition by Amino Acids in .
Microorganisms. 2020 Dec 22;9(1):7. doi: 10.3390/microorganisms9010007.
3
Mitochondrial respiration is required to provide amino acids during fermentative proliferation of fission yeast.
EMBO Rep. 2020 Nov 5;21(11):e50845. doi: 10.15252/embr.202050845. Epub 2020 Sep 7.
4
The reactome pathway knowledgebase.
Nucleic Acids Res. 2020 Jan 8;48(D1):D498-D503. doi: 10.1093/nar/gkz1031.
6
Genome architecture and stability in the Saccharomyces cerevisiae knockout collection.
Nature. 2019 Sep;573(7774):416-420. doi: 10.1038/s41586-019-1549-9. Epub 2019 Sep 11.
7
The Goldilocks effect of respiration on canavanine tolerance in Saccharomyces cerevisiae.
Curr Genet. 2019 Oct;65(5):1199-1215. doi: 10.1007/s00294-019-00974-y. Epub 2019 Apr 22.
9
Machine Learning Predicts the Yeast Metabolome from the Quantitative Proteome of Kinase Knockouts.
Cell Syst. 2018 Sep 26;7(3):269-283.e6. doi: 10.1016/j.cels.2018.08.001. Epub 2018 Sep 5.
10
The machineries, regulation and cellular functions of mitochondrial calcium.
Nat Rev Mol Cell Biol. 2018 Nov;19(11):713-730. doi: 10.1038/s41580-018-0052-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验