Suppr超能文献

从骨的脆性骨折到韧性骨折。

From brittle to ductile fracture of bone.

作者信息

Peterlik Herwig, Roschger Paul, Klaushofer Klaus, Fratzl Peter

机构信息

Institute of Materials Physics, University of Vienna, A-1090 Vienna, Austria.

出版信息

Nat Mater. 2006 Jan;5(1):52-5. doi: 10.1038/nmat1545. Epub 2005 Dec 11.

Abstract

Toughness is crucial to the structural function of bone. Usually, the toughness of a material is not just determined by its composition, but by the ability of its microstructure to dissipate deformation energy without propagation of the crack. Polymers are often able to dissipate energy by viscoplastic flow or the formation of non-connected microcracks. In ceramics, well-known toughening mechanisms are based on crack ligament bridging and crack deflection. Interestingly, all these phenomena were identified in bone, which is a composite of a fibrous polymer (collagen) and ceramic nanoparticles (carbonated hydroxyapatite). Here, we use controlled crack-extension experiments to explain the influence of fibre orientation on steering the various toughening mechanisms. We find that the fracture energy changes by two orders of magnitude depending on the collagen orientation, and the angle between collagen and crack propagation direction is decisive in switching between different toughening mechanisms.

摘要

韧性对于骨骼的结构功能至关重要。通常,材料的韧性不仅取决于其组成,还取决于其微观结构在不产生裂纹扩展的情况下耗散变形能量的能力。聚合物通常能够通过粘塑性流动或形成不相连的微裂纹来耗散能量。在陶瓷中,众所周知的增韧机制基于裂纹韧带桥接和裂纹偏转。有趣的是,所有这些现象在骨骼中都有发现,骨骼是一种由纤维状聚合物(胶原蛋白)和陶瓷纳米颗粒(碳酸羟基磷灰石)组成的复合材料。在此,我们通过控制裂纹扩展实验来解释纤维取向对引导各种增韧机制的影响。我们发现,根据胶原蛋白的取向,断裂能会改变两个数量级,并且胶原蛋白与裂纹扩展方向之间的角度对于不同增韧机制之间的转换起决定性作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验