Guo Xiao, Dong Xinyu, Zou Guijin, Zhang Haoqi, Zeng Kaiyang, Gao Huajian, Zhai Wei
Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore.
School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore 639789, Singapore.
Proc Natl Acad Sci U S A. 2025 Mar 4;122(9):e2424124122. doi: 10.1073/pnas.2424124122. Epub 2025 Feb 27.
Mimicking hierarchical structures found in nature, such as nacre and tendon, has led to remarkable successes in the creation of biomimetic materials with exceptional properties. The depth of knowledge derived from nature extends far beyond mere trial-and-error fabrication by providing deep insights into the toughening mechanisms that are integral to natural materials. A key challenge is understanding how these toughening mechanisms can be effectively translated into biomimetic materials. Here, we characterize the multiscale mechanical behavior of tendon-like fibrous hydrogels, unraveling the intricate toughening mechanisms at play across multiple scales-from dynamic molecular interactions and nanoscale fibril sliding, to anisotropic microscale characteristics and macroscopic performance-using a combination of experimental and simulation approaches. Additionally, we address the open question of how hierarchical structures exhibit mechanical properties at different scales, demonstrating that hydrogels, fibrils, and chains take up successively lower levels of strain in a ratio of 11.5:3.2:2. This work establishes a comprehensive framework for exploring nature-inspired materials, marking a significant step forward in the advancement of biomimetic technology.
模仿自然界中发现的分层结构,如珍珠母和肌腱,在创造具有卓越性能的仿生材料方面取得了显著成功。从自然界获得的知识深度远远超出了单纯的试错制造,它为天然材料不可或缺的增韧机制提供了深刻见解。一个关键挑战是理解这些增韧机制如何能够有效地转化为仿生材料。在这里,我们通过结合实验和模拟方法,表征了肌腱状纤维水凝胶的多尺度力学行为,揭示了在多个尺度上起作用的复杂增韧机制——从动态分子相互作用和纳米级原纤维滑动,到各向异性微观尺度特征和宏观性能。此外,我们解决了分层结构如何在不同尺度上表现出力学性能这一悬而未决的问题,证明水凝胶、原纤维和链以11.5:3.2:2的比例依次承受较低水平的应变。这项工作建立了一个探索受自然启发材料的综合框架,标志着仿生技术取得了重大进展。