Suppr超能文献

基于多类支持向量机和遗传算法的基因选择

Gene selection based on multi-class support vector machines and genetic algorithms.

作者信息

Souza Bruno Feres de, Carvalho André Ponce de Leon F de

机构信息

Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, v. Trabalhador São-Carlense, 400, 13560-970 São Carlos, SP, Brazil.

出版信息

Genet Mol Res. 2005 Sep 30;4(3):599-607.

Abstract

Microarrays are a new technology that allows biologists to better understand the interactions between diverse pathologic state at the gene level. However, the amount of data generated by these tools becomes problematic, even though data are supposed to be automatically analyzed (e.g., for diagnostic purposes). The issue becomes more complex when the expression data involve multiple states. We present a novel approach to the gene selection problem in multi-class gene expression-based cancer classification, which combines support vector machines and genetic algorithms. This new method is able to select small subsets and still improve the classification accuracy.

摘要

微阵列是一项新技术,它能让生物学家在基因层面更好地理解不同病理状态之间的相互作用。然而,即便数据理应会被自动分析(例如用于诊断目的),这些工具生成的数据量还是成了问题。当表达数据涉及多种状态时,问题就变得更加复杂。我们提出了一种基于多类基因表达的癌症分类中基因选择问题的新方法,该方法结合了支持向量机和遗传算法。这种新方法能够选择小的子集,同时仍能提高分类准确率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验