Suppr超能文献

用于数量性状定位的异质表型剖析。

Dissection of heterogeneous phenotypes for quantitative trait mapping.

作者信息

Bickeböller Heike, Bailey Julia N, Papanicolaou George J, Rosenberger Albert, Viel Kevin R

机构信息

Department of Genetic Epidemiology, Georg-August University, Göttingen, Germany.

出版信息

Genet Epidemiol. 2005;29 Suppl 1:S41-7. doi: 10.1002/gepi.20109.

Abstract

We discuss analyses of Genetic Analysis Workshop 14 data from the Collaborative Study on the Genetics of Alcoholism (COGA) as well as from a simulated complex disease, Kofendrerd personality disorder (KPD), with both genetic and phenotypic heterogeneity. Both data sets included numerous related phenotypes in addition to disease definitions. All analyses either chose from the given selection of phenotypes or defined new ones, including traits that may not have been related to alcoholism or KPD. Some contributors evaluated the genetic components of the trait. Many investigated genome-wide linkage and/or association, using microsatellites and/or single-nucleotide polymorphism (SNP) chip data. Here we will focus on methodological issues that the investigators faced. Their results depended on phenotype selection, whether continuous or discrete, the covariates included, and ethnicity of the study population. For SNP chip data, members of our group detected no difference in results for Affymetrix or Illumina chips, although higher marker density for association studies appeared to be advantageous. Overall, there were some observations that different chromosomal segments, i.e., physical locations on the p-arm, q-arm, or middle segment, might lead to possible differences in type I error rates. This finding and others highlight the importance of empirical determination of P-values to determine significance.

摘要

我们讨论了对来自酒精中毒遗传学合作研究(COGA)以及模拟复杂疾病——科芬德雷德人格障碍(KPD)的遗传分析研讨会14数据的分析,这两种疾病都具有遗传和表型异质性。除了疾病定义外,这两个数据集还包括众多相关表型。所有分析要么从给定的表型选择中进行选择,要么定义新的表型,包括可能与酒精中毒或KPD无关的性状。一些研究者评估了性状的遗传成分。许多人使用微卫星和/或单核苷酸多态性(SNP)芯片数据研究全基因组连锁和/或关联。在这里,我们将重点关注研究者面临的方法学问题。他们的结果取决于表型选择(无论是连续的还是离散的)、所纳入的协变量以及研究人群的种族。对于SNP芯片数据,我们团队的成员未检测到Affymetrix或Illumina芯片的结果存在差异,尽管关联研究中更高的标记密度似乎具有优势。总体而言,有一些观察结果表明,不同的染色体片段,即p臂、q臂或中间片段上的物理位置,可能会导致I型错误率出现差异。这一发现以及其他发现凸显了通过实证确定P值以确定显著性的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验