Crawford Gregory E, Holt Ingeborg E, Whittle James, Webb Bryn D, Tai Denise, Davis Sean, Margulies Elliott H, Chen YiDong, Bernat John A, Ginsburg David, Zhou Daixing, Luo Shujun, Vasicek Thomas J, Daly Mark J, Wolfsberg Tyra G, Collins Francis S
National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
Genome Res. 2006 Jan;16(1):123-31. doi: 10.1101/gr.4074106. Epub 2005 Dec 12.
A major goal in genomics is to understand how genes are regulated in different tissues, stages of development, diseases, and species. Mapping DNase I hypersensitive (HS) sites within nuclear chromatin is a powerful and well-established method of identifying many different types of regulatory elements, but in the past it has been limited to analysis of single loci. We have recently described a protocol to generate a genome-wide library of DNase HS sites. Here, we report high-throughput analysis, using massively parallel signature sequencing (MPSS), of 230,000 tags from a DNase library generated from quiescent human CD4+ T cells. Of the tags that uniquely map to the genome, we identified 14,190 clusters of sequences that group within close proximity to each other. By using a real-time PCR strategy, we determined that the majority of these clusters represent valid DNase HS sites. Approximately 80% of these DNase HS sites uniquely map within one or more annotated regions of the genome believed to contain regulatory elements, including regions 2 kb upstream of genes, CpG islands, and highly conserved sequences. Most DNase HS sites identified in CD4+ T cells are also HS in CD8+ T cells, B cells, hepatocytes, human umbilical vein endothelial cells (HUVECs), and HeLa cells. However, approximately 10% of the DNase HS sites are lymphocyte specific, indicating that this procedure can identify gene regulatory elements that control cell type specificity. This strategy, which can be applied to any cell line or tissue, will enable a better understanding of how chromatin structure dictates cell function and fate.
基因组学的一个主要目标是了解基因在不同组织、发育阶段、疾病和物种中是如何被调控的。绘制核染色质内的DNA酶I超敏(HS)位点是一种强大且成熟的方法,可用于识别许多不同类型的调控元件,但过去它仅限于对单个位点的分析。我们最近描述了一种生成全基因组DNA酶HS位点文库的方案。在此,我们报告了使用大规模平行签名测序(MPSS)对来自静止人类CD4+ T细胞的DNA酶文库中的230,000个标签进行的高通量分析。在唯一映射到基因组的标签中,我们鉴定出14,190个彼此紧密相邻的序列簇。通过使用实时PCR策略,我们确定这些簇中的大多数代表有效的DNA酶HS位点。这些DNA酶HS位点中约80%唯一映射到基因组中一个或多个被认为包含调控元件的注释区域内,包括基因上游2 kb区域、CpG岛和高度保守序列。在CD4+ T细胞中鉴定出的大多数DNA酶HS位点在CD8+ T细胞、B细胞、肝细胞、人脐静脉内皮细胞(HUVECs)和HeLa细胞中也是超敏的。然而,约10%的DNA酶HS位点是淋巴细胞特异性的,这表明该方法可以识别控制细胞类型特异性的基因调控元件。这种可应用于任何细胞系或组织的策略将有助于更好地理解染色质结构如何决定细胞功能和命运。