Suppr超能文献

综述和评估 ATAC-seq 和 CUT&Tag 数据的生物信息学分析策略。

Review and Evaluate the Bioinformatics Analysis Strategies of ATAC-seq and CUT&Tag Data.

机构信息

Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA.

Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA.

出版信息

Genomics Proteomics Bioinformatics. 2024 Sep 13;22(3). doi: 10.1093/gpbjnl/qzae054.

Abstract

Efficient and reliable profiling methods are essential to study epigenetics. Tn5, one of the first identified prokaryotic transposases with high DNA-binding and tagmentation efficiency, is widely adopted in different genomic and epigenomic protocols for high-throughputly exploring the genome and epigenome. Based on Tn5, the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and the Cleavage Under Targets and Tagmentation (CUT&Tag) were developed to measure chromatin accessibility and detect DNA-protein interactions. These methodologies can be applied to large amounts of biological samples with low-input levels, such as rare tissues, embryos, and sorted single cells. However, fast and proper processing of these epigenomic data has become a bottleneck because massive data production continues to increase quickly. Furthermore, inappropriate data analysis can generate biased or misleading conclusions. Therefore, it is essential to evaluate the performance of Tn5-based ATAC-seq and CUT&Tag data processing bioinformatics tools, many of which were developed mostly for analyzing chromatin immunoprecipitation followed by sequencing (ChIP-seq) data. Here, we conducted a comprehensive benchmarking analysis to evaluate the performance of eight popular software for processing ATAC-seq and CUT&Tag data. We compared the sensitivity, specificity, and peak width distribution for both narrow-type and broad-type peak calling. We also tested the influence of the availability of control IgG input in CUT&Tag data analysis. Finally, we evaluated the differential analysis strategies commonly used for analyzing the CUT&Tag data. Our study provided comprehensive guidance for selecting bioinformatics tools and recommended analysis strategies, which were implemented into Docker/Singularity images for streamlined data analysis.

摘要

高效可靠的分析方法对于研究表观遗传学至关重要。Tn5 是最早鉴定出的具有高 DNA 结合和标签化效率的原核转座酶之一,广泛应用于不同的基因组和表观基因组学方案中,以高通量地探索基因组和表观基因组。基于 Tn5,开发了转座酶可及染色质测序(ATAC-seq)和靶向切割和标签化(CUT&Tag),以测量染色质可及性并检测 DNA-蛋白质相互作用。这些方法可应用于大量低输入水平的生物样本,如稀有组织、胚胎和分选的单细胞。然而,这些表观基因组数据的快速和适当处理已成为一个瓶颈,因为大量数据的产生仍在快速增加。此外,不适当的数据分析可能会产生有偏差或误导性的结论。因此,评估基于 Tn5 的 ATAC-seq 和 CUT&Tag 数据处理生物信息学工具的性能至关重要,其中许多工具主要是为分析染色质免疫沉淀 followed by sequencing (ChIP-seq) 数据而开发的。在这里,我们进行了全面的基准分析,以评估用于处理 ATAC-seq 和 CUT&Tag 数据的八种流行软件的性能。我们比较了窄峰和宽峰调用的灵敏度、特异性和峰宽分布。我们还测试了 CUT&Tag 数据分析中控制 IgG 输入可用性的影响。最后,我们评估了常用于分析 CUT&Tag 数据的差异分析策略。我们的研究为选择生物信息学工具和推荐分析策略提供了全面的指导,并将其实现为 Docker/Singularity 映像,以实现流畅的数据分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7414/11464419/7ddfce7159f2/qzae054f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验