Suppr超能文献

使用不进行¹H去耦的局部¹³C NMR光谱在高场下研究脑代谢。

Investigating brain metabolism at high fields using localized 13C NMR spectroscopy without 1H decoupling.

作者信息

Deelchand Dinesh Kumar, Uğurbil Kâmil, Henry Pierre-Gilles

机构信息

Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.

出版信息

Magn Reson Med. 2006 Feb;55(2):279-86. doi: 10.1002/mrm.20756.

Abstract

Most in vivo 13C NMR spectroscopy studies in the brain have been performed using 1H decoupling during acquisition. Decoupling imposes significant constraints on the experimental setup (particularly for human studies at high magnetic field) in order to stay within safety limits for power deposition. We show here that incorporation of the 13C label from 13C-labeled glucose into brain amino acids can be monitored accurately using localized 13C NMR spectroscopy without the application of 1H decoupling. Using LCModel quantification with prior knowledge of one-bond and multiple-bond J(CH) coupling constants, the uncertainty on metabolites concentrations was only 35% to 91% higher (depending on the carbon resonance of interest) in undecoupled spectra compared to decoupled spectra in the rat brain at 9.4 Tesla. Although less sensitive, 13C NMR without decoupling dramatically reduces experimental constraints on coil setup and pulse sequence design required to keep power deposition within safety guidelines. This opens the prospect of safely measuring 13C NMR spectra in humans at varied brain locations (not only the occipital lobe) and at very high magnetic fields above 4 Tesla.

摘要

大多数针对大脑的体内13C核磁共振波谱研究都是在采集过程中使用1H去耦进行的。为了保持在功率沉积的安全限度内,去耦对实验装置施加了重大限制(特别是对于高磁场下的人体研究)。我们在此表明,使用局部13C核磁共振波谱,无需应用1H去耦,就可以准确监测13C标记葡萄糖中的13C标记掺入脑氨基酸的情况。利用LCModel定量方法,并事先了解一键和多键J(CH)耦合常数,在9.4特斯拉的大鼠大脑中,与去耦谱相比,未去耦谱中代谢物浓度的不确定性仅高35%至91%(取决于所关注的碳共振)。尽管灵敏度较低,但未去耦的13C核磁共振波谱大大减少了将功率沉积保持在安全准则范围内所需的线圈设置和脉冲序列设计方面的实验限制。这为在人类大脑的不同位置(不仅是枕叶)以及在4特斯拉以上的超高磁场下安全测量13C核磁共振波谱开辟了前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验