Rodrigues Tiago B, Valette Julien, Bouzier-Sore Anne-Karine
Cancer Research UK Cambridge Institute and Department of Biochemistry, University of Cambridge Cambridge, UK.
Commissariat à l'Energie Atomique, Institut d'Imagerie Biomédicale, Molecular Imaging Research Center Fontenay-Aux-Roses, France.
Front Neuroenergetics. 2013 Dec 9;5:9. doi: 10.3389/fnene.2013.00009.
(13)C nuclear magnetic resonance (NMR) spectroscopy is the method of choice for studying brain metabolism. Indeed, the most convincing data obtained to decipher metabolic exchanges between neurons and astrocytes have been obtained using this technique, thus illustrating its power. It may be difficult for non-specialists, however, to grasp thefull implication of data presented in articles written by spectroscopists. The aim of the review is, therefore, to provide a fundamental understanding of this topic to facilitate the non-specialists in their reading of this literature. In the first part of this review, we present the metabolic fate of (13)C-labeled substrates in the brain in a detailed way, including an overview of some general neurochemical principles. We also address and compare the various spectroscopic strategies that can be used to study brain metabolism. Then, we provide an overview of the (13)C NMR experiments performed to analyze both intracellular and intercellular metabolic fluxes. More particularly, the role of lactate as a potential energy substrate for neurons is discussed in the light of (13)C NMR data. Finally, new perspectives and applications offered by (13)C hyperpolarization are described.
碳-13核磁共振(NMR)光谱法是研究脑代谢的首选方法。事实上,运用该技术已获得了关于解读神经元与星形胶质细胞间代谢交换的最具说服力的数据,由此彰显了其强大功能。然而,对于非专业人士而言,可能难以领会光谱学家撰写的文章中所呈现数据的全部内涵。因此,本综述的目的在于让非专业人士对这一主题有基本的了解,以便于他们阅读此类文献。在本综述的第一部分,我们详细阐述了碳-13标记底物在脑中的代谢归宿,包括一些一般神经化学原理的概述。我们还探讨并比较了可用于研究脑代谢的各种光谱学策略。接着,我们概述了为分析细胞内和细胞间代谢通量而进行的碳-13核磁共振实验。更具体地说,根据碳-13核磁共振数据讨论了乳酸作为神经元潜在能量底物的作用。最后,描述了碳-13超极化提供的新视角和应用。