E. I. du Pont de Nemours & Co., Inc., Savannah River Laboratory, Aiken, South Carolina 29808.
Appl Environ Microbiol. 1982 Jul;44(1):171-8. doi: 10.1128/aem.44.1.171-178.1982.
In South Carolina surface soils, the uptake of gaseous tritium (T(2), HT, or both) showed a broad optimal temperature response from about 20 to 50 degrees C, with the highest rates at 35 to 45 degrees C. The optimal pH was in the range of 4 to 7. Uptake rates declined at the wet and dry extremes in soil moisture content. Inhibition seen upon the addition of hydrogen or carbon monoxide to the soil atmosphere suggested that hydrogenase may be responsible for T(2)-HT uptake in soil. During the period of most rapid recovery in a 36-day incubation of reinoculated, sterilized soil, T(2)-HT uptake rates doubled every 2 to 4 days. Thus, T(2)-HT uptake appears to be biologically mediated. Soil uptake of T(2)-HT was not severely limited by pH, temperature, or moisture in the soils tested. Thus, rapid exchange of gaseous tritium into soil water must be expected and accounted for in modeling the isotope distributions around nuclear facilities.
在南卡罗来纳州的表层土壤中,气态氚(T(2)、HT 或两者)的吸收表现出从约 20 到 50°C 的宽最佳温度响应,在 35 到 45°C 时速率最高。最佳 pH 值在 4 到 7 之间。在土壤含水量的湿端和干端,吸收速率下降。在向土壤大气中添加氢气或一氧化碳时观察到的抑制表明,氢酶可能负责土壤中 T(2)-HT 的吸收。在再接种、灭菌土壤的 36 天培养过程中,恢复最快的时期,T(2)-HT 的吸收速率每 2 到 4 天增加一倍。因此,T(2)-HT 的吸收似乎是生物介导的。在所测试的土壤中,T(2)-HT 的土壤吸收不受 pH 值、温度或水分的严重限制。因此,必须预计到并在围绕核设施的同位素分布建模中考虑到气态氚迅速交换到土壤水中的情况。