Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149-1098.
Appl Environ Microbiol. 1983 Dec;46(6):1286-92. doi: 10.1128/aem.46.6.1286-1292.1983.
Vanillic acid (4-hydroxy-3-methoxybenzoic acid) supported the anaerobic (nitrate respiration) but not the aerobic growth of Pseudomonas sp. strain PN-1. Cells grown anaerobically on vanillate oxidized vanillate, p-hydroxybenzoate, and protocatechuic acid (3,4-dihydroxybenzoic acid) with O(2) or nitrate. Veratric acid (3,4-dimethoxybenzoic acid) but not isovanillic acid (3-hydroxy-4-methoxybenzoic acid) induced cells for the oxic and anoxic utilization of vanillate, and protocatechuate was detected as an intermediate of vanillate breakdown under either condition. Aerobic catabolism of protocatechuate proceeded via 4,5-meta cleavage, whereas anaerobically it was probably dehydroxylated to benzoic acid. Formaldehyde was identified as a product of aerobic demethylation, indicating a monooxygenase mechanism, but was not detected during anaerobic demethylation. The aerobic and anaerobic systems had similar but not identical substrate specificities. Both utilized m-anisic acid (3-methoxybenzoic acid) and veratrate but not o- or p-anisate and isovanillate. Syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid), 3-O-methylgallic acid (3-methoxy-4,5-dihydroxybenzoic acid), and 3,5-dimethoxybenzoic acid were attacked under either condition, and formaldehyde was liberated from these substrates in the presence of O(2). The anaerobic demethylating system but not the aerobic enzyme was also active upon guaiacol (2-methoxyphenol), ferulic acid (3-[4-hydroxy-3-methoxyphenyl]-2-propenoic acid), 3,4,5-trimethoxycinnamic acid (3-[3,4,5-trimethoxyphenyl]-2-propenoic acid), and 3,4,5-trimethoxybenzoic acid. The broad specificity of the anaerobic demethylation system suggests that it probably is significant in the degradation of lignoaromatic molecules in anaerobic environments.
香草酸(4-羟基-3-甲氧基苯甲酸)支持假单胞菌 PN-1 菌株的厌氧(硝酸盐呼吸)但不支持其好氧生长。在厌氧条件下,用香草酸盐培养的细胞用 O2 或硝酸盐氧化香草酸盐、对羟基苯甲酸和原儿茶酸(3,4-二羟基苯甲酸)。藜芦酸(3,4-二甲氧基苯甲酸)而不是异香草酸(3-羟基-4-甲氧基苯甲酸)诱导细胞进行香草酸盐的好氧和缺氧利用,并且在两种条件下都检测到原儿茶酸是香草酸盐分解的中间产物。原儿茶酸的好氧分解代谢通过 4,5-元裂解进行,而在厌氧条件下,它可能被脱氢化为苯甲酸。甲醛被鉴定为好氧去甲基化的产物,表明存在单加氧酶机制,但在厌氧去甲基化过程中未检测到。好氧和厌氧系统具有相似但不完全相同的底物特异性。两者都利用间苯二甲酸(3-甲氧基苯甲酸)和藜芦酸盐,但不利用邻或对苯二甲酸盐和异香草酸盐。丁香酸(4-羟基-3,5-二甲氧基苯甲酸)、3-O-甲基没食子酸(3-甲氧基-4,5-二羟基苯甲酸)和 3,5-二甲氧基苯甲酸在两种条件下都受到攻击,并且在存在 O2 的情况下,这些底物释放甲醛。厌氧去甲基化系统而不是好氧酶也能在愈创木酚(2-甲氧基苯酚)、阿魏酸(3-[4-羟基-3-甲氧基苯基]-2-丙烯酸)、3,4,5-三甲氧基肉桂酸(3-[3,4,5-三甲氧基苯基]-2-丙烯酸)和 3,4,5-三甲氧基苯甲酸存在的情况下发挥作用。厌氧去甲基化系统的广泛特异性表明,它可能在厌氧环境中木质素芳香族分子的降解中具有重要意义。