Suppr超能文献

硫酸盐还原相对于高速厌氧消化中的甲烷生成:微生物学方面。

Sulfate reduction relative to methane production in high-rate anaerobic digestion: microbiological aspects.

机构信息

Laboratory of Microbial Ecology, State University of Ghent, Coupure L 653, B-9000 Ghent, Belgium.

出版信息

Appl Environ Microbiol. 1986 Mar;51(3):580-7. doi: 10.1128/aem.51.3.580-587.1986.

Abstract

In the high-rate anaerobic reactors studied (ca. 10 g of chemical oxygen demand [COD] removed per liter of reactor per day), the sulfate-reducing bacteria (SRB) were poor competitors of methane-producing bacteria (MPB), scavenging only on the order of 10 to 20% of the total electron flow. The relatively noncompetitive nature of the SRB in this type of reactor is in sharp contrast to the tendency of the SRB to dominate in natural environments and in other types of anaerobic digesters. Various factors such as the feedback inhibition of H(2)S on the SRB, iron limitation, the origin of the SRB inocula, biokinetics, and thermodynamics were investigated. The outcome of the SRB-MPB competition under the reactor conditions studied appeared to be particularly determined by two factors. The SRB, as predicted by the V(max)-K(m) kinetics, competed most effectively at low substrate levels (<0.5 g of COD per liter). The MPB, however, appeared to colonize and adhere much more effectively to the polyurethane carrier matrix present in the reactor, thus compensating for the apparent lower growth rates. Even if the reactor was initially allowed to be predominantly colonized by SRB, the MPB could regain dominance.

摘要

在研究的高负荷厌氧反应器(约 10 克化学需氧量 [COD] 每天每升反应器去除)中,硫酸盐还原菌(SRB)对产甲烷菌(MPB)的竞争力很差,仅掠取总电子流量的 10%到 20%。在这种类型的反应器中,SRB 的这种相对非竞争性与 SRB 在自然环境和其他类型的厌氧消化器中占主导地位的趋势形成鲜明对比。研究了各种因素,如 H(2)S 对 SRB 的反馈抑制、铁限制、SRB 接种物的来源、生物动力学和热力学。在研究的反应器条件下,SRB-MPB 竞争的结果似乎特别由两个因素决定。正如 V(max)-K(m)动力学所预测的那样,SRB 在低底物水平(<0.5 克 COD 每升)下竞争最有效。然而,MPB 似乎更有效地定植和附着在反应器中存在的聚氨酯载体基质上,从而弥补了明显较低的生长速率。即使反应器最初允许主要由 SRB 定植,MPB 也可以重新获得优势。

相似文献

1
Sulfate reduction relative to methane production in high-rate anaerobic digestion: microbiological aspects.
Appl Environ Microbiol. 1986 Mar;51(3):580-7. doi: 10.1128/aem.51.3.580-587.1986.
2
Upflow anaerobic sludge blanket reactor--a review.
Indian J Environ Health. 2001 Apr;43(2):1-82.
5
Biological sulfate reduction using molasses as a carbon source.
Water Environ Res. 2001 Jan-Feb;73(1):118-26. doi: 10.2175/106143001x138778.
6
Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors.
Water Res. 2015 May 15;75:292-300. doi: 10.1016/j.watres.2015.02.056. Epub 2015 Mar 6.
7
COD/sulfate ratio does not affect the methane yield and microbial diversity in anaerobic digesters.
Water Res. 2019 May 15;155:444-454. doi: 10.1016/j.watres.2019.02.038. Epub 2019 Mar 4.
8
Enhanced methane production by alleviating sulfide inhibition with a microbial electrolysis coupled anaerobic digestion reactor.
Environ Int. 2020 Mar;136:105503. doi: 10.1016/j.envint.2020.105503. Epub 2020 Jan 30.

引用本文的文献

1
Emerging Strategies for Enhancing Propionate Conversion in Anaerobic Digestion: A Review.
Molecules. 2023 May 4;28(9):3883. doi: 10.3390/molecules28093883.
2
In-Vitro Assessment of the Corrosion Potential of an Oral Strain of Sulfate-Reducing Bacteria on Metallic Orthodontic Materials.
Int J Environ Res Public Health. 2022 Nov 19;19(22):15312. doi: 10.3390/ijerph192215312.
3
Biocorrosive behavior of sulphate-reducing bacteria in kerr endodontic files: Determination of the corrosion.
J Conserv Dent. 2020 Mar-Apr;23(2):196-200. doi: 10.4103/JCD.JCD_64_19. Epub 2020 Nov 5.
4
Sulfate Alters the Competition Among Microbiome Members of Sediments Chronically Exposed to Asphalt.
Front Microbiol. 2020 Sep 29;11:556793. doi: 10.3389/fmicb.2020.556793. eCollection 2020.
5
Sulfate-Reducing Bacteria: Biofilm Formation and Corrosive Activity in Endodontic Files.
Int J Dent. 2018 May 10;2018:8303450. doi: 10.1155/2018/8303450. eCollection 2018.
6
Coexistence and competition of sulfate-reducing and methanogenic populations in an anaerobic hexadecane-degrading culture.
Biotechnol Biofuels. 2017 Sep 5;10:207. doi: 10.1186/s13068-017-0895-9. eCollection 2017.
7
Performance of CSTR-EGSB-SBR system for treating sulfate-rich cellulosic ethanol wastewater and microbial community analysis.
Environ Sci Pollut Res Int. 2017 Jun;24(16):14387-14395. doi: 10.1007/s11356-017-9022-5. Epub 2017 Apr 21.
8
Genetic resources for methane production from biomass described with the Gene Ontology.
Front Microbiol. 2014 Dec 3;5:634. doi: 10.3389/fmicb.2014.00634. eCollection 2014.
9
Mixed culture hydrogenotrophic nitrate reduction in drinking water.
Microb Ecol. 1992 Nov;24(3):271-90. doi: 10.1007/BF00167786.
10
Population dynamics of a single-stage sulfidogenic bioreactor treating synthetic zinc-containing waste streams.
Microb Ecol. 2009 Oct;58(3):529-37. doi: 10.1007/s00248-009-9509-9. Epub 2009 Mar 27.

本文引用的文献

1
Sulfate reduction relative to methane production in high-rate anaerobic digestion: technical aspects.
Appl Environ Microbiol. 1986 Mar;51(3):572-9. doi: 10.1128/aem.51.3.572-579.1986.
2
Kinetics of Sulfate and Acetate Uptake by Desulfobacter postgatei.
Appl Environ Microbiol. 1984 Feb;47(2):403-8. doi: 10.1128/aem.47.2.403-408.1984.
3
Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations.
Appl Environ Microbiol. 1983 Jan;45(1):187-92. doi: 10.1128/aem.45.1.187-192.1983.
4
Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments.
Appl Environ Microbiol. 1982 Dec;44(6):1270-6. doi: 10.1128/aem.44.6.1270-1276.1982.
5
Volatile Fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment.
Appl Environ Microbiol. 1981 Jul;42(1):5-11. doi: 10.1128/aem.42.1.5-11.1981.
7
Some observations on growth and hydrogen uptake by Desulfovibrio vulgaris.
Arch Mikrobiol. 1971;80(4):324-37. doi: 10.1007/BF00406220.
9
Energy conservation in chemotrophic anaerobic bacteria.
Bacteriol Rev. 1977 Mar;41(1):100-80. doi: 10.1128/br.41.1.100-180.1977.
10
Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments.
Appl Environ Microbiol. 1977 Feb;33(2):275-81. doi: 10.1128/aem.33.2.275-281.1977.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验