Suppr超能文献

利用基因本体论描述的生物质甲烷生产的遗传资源。

Genetic resources for methane production from biomass described with the Gene Ontology.

作者信息

Purwantini Endang, Torto-Alalibo Trudy, Lomax Jane, Setubal João C, Tyler Brett M, Mukhopadhyay Biswarup

机构信息

Department of Biochemistry, Virginia Polytechnic Institute and State University Blacksburg, VA, USA.

European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory Hinxton, UK.

出版信息

Front Microbiol. 2014 Dec 3;5:634. doi: 10.3389/fmicb.2014.00634. eCollection 2014.

Abstract

Methane (CH4) is a valuable fuel, constituting 70-95% of natural gas, and a potent greenhouse gas. Release of CH4 into the atmosphere contributes to climate change. Biological CH4 production or methanogenesis is mostly performed by methanogens, a group of strictly anaerobic archaea. The direct substrates for methanogenesis are H2 plus CO2, acetate, formate, methylamines, methanol, methyl sulfides, and ethanol or a secondary alcohol plus CO2. In numerous anaerobic niches in nature, methanogenesis facilitates mineralization of complex biopolymers such as carbohydrates, lipids and proteins generated by primary producers. Thus, methanogens are critical players in the global carbon cycle. The same process is used in anaerobic treatment of municipal, industrial and agricultural wastes, reducing the biological pollutants in the wastes and generating methane. It also holds potential for commercial production of natural gas from renewable resources. This process operates in digestive systems of many animals, including cattle, and humans. In contrast, in deep-sea hydrothermal vents methanogenesis is a primary production process, allowing chemosynthesis of biomaterials from H2 plus CO2. In this report we present Gene Ontology (GO) terms that can be used to describe processes, functions and cellular components involved in methanogenic biodegradation and biosynthesis of specialized coenzymes that methanogens use. Some of these GO terms were previously available and the rest were generated in our Microbial Energy Gene Ontology (MENGO) project. A recently discovered non-canonical CH4 production process is also described. We have performed manual GO annotation of selected methanogenesis genes, based on experimental evidence, providing "gold standards" for machine annotation and automated discovery of methanogenesis genes or systems in diverse genomes. Most of the GO-related information presented in this report is available at the MENGO website (http://www.mengo.biochem.vt.edu/).

摘要

甲烷(CH₄)是一种宝贵的燃料,占天然气的70 - 95%,也是一种强效温室气体。甲烷释放到大气中会导致气候变化。生物甲烷生成或产甲烷作用主要由产甲烷菌进行,产甲烷菌是一类严格厌氧的古菌。产甲烷作用的直接底物是氢气加二氧化碳、乙酸盐、甲酸盐、甲胺、甲醇、甲基硫化物,以及乙醇或仲醇加二氧化碳。在自然界众多的厌氧生态位中,产甲烷作用促进了复杂生物聚合物(如初级生产者产生的碳水化合物、脂质和蛋白质)的矿化。因此,产甲烷菌是全球碳循环中的关键参与者。同样的过程用于城市、工业和农业废弃物的厌氧处理,减少废弃物中的生物污染物并产生甲烷。它也具有从可再生资源商业化生产天然气的潜力。这个过程在包括牛和人类在内的许多动物的消化系统中起作用。相比之下,在深海热液喷口中,产甲烷作用是一个初级生产过程,允许由氢气加二氧化碳进行生物材料的化学合成。在本报告中,我们展示了可用于描述产甲烷生物降解过程、功能以及产甲烷菌所使用的特殊辅酶生物合成过程中涉及的细胞成分的基因本体(GO)术语。其中一些GO术语以前就有,其余的是在我们的微生物能量基因本体(MENGO)项目中生成的。还描述了最近发现的一种非经典甲烷生成过程。我们基于实验证据对选定的产甲烷作用基因进行了手动GO注释,为在不同基因组中机器注释和自动发现产甲烷作用基因或系统提供了“金标准”。本报告中呈现的大多数与GO相关的信息可在MENGO网站(http://www.mengo.biochem.vt.edu/)上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4e5/4253957/47e073af85c9/fmicb-05-00634-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验