Suppr超能文献

一些深海细菌中葡萄糖运输系统的特性。

Properties of the glucose transport system in some deep-sea bacteria.

机构信息

Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093.

出版信息

Appl Environ Microbiol. 1987 Mar;53(3):527-32. doi: 10.1128/aem.53.3.527-532.1987.

Abstract

Many deep-sea bacteria are specifically adapted to flourish under the high hydrostatic pressures which exist in their natural environment. For better understanding of the physiology and biochemistry of these microorganisms, properties of the glucose transport systems in two barophilic isolates (PE-36, CNPT-3) and one psychrophilic marine bacterium (Vibrio marinus MP1) were studied. These bacteria use a phosphoenol-pyruvate:sugar phosphotransferase system (PTS) for glucose transport, similar to that found in many members of the Vibrionaceae and Enterobacteriaceae. The system was highly specific for glucose and its nonmetabolizable analog, methyl alpha-glucoside (a-MG), and exhibited little affinity for other sugars tested. The temperature optimum for glucose phosphorylation in vitro was approximately 20 degrees C. Membrane-bound PTS components of deep-sea bacteria were capable of enzymatically cross-reacting with the soluble PTS enzymes of Salmonella typhimurium, indicating functional similarities between the PTS systems of these organisms. In CNPT-3 and V. marinus, increased pressure had an inhibitory effect on a-MG uptake, to the greatest extent in V. marinus. Relative to atmospheric pressure, increased pressure stimulated sugar uptake in the barophilic isolate PE-36 considerably. Increased hydrostatic pressure inhibited in vitro phosphoenolpyruvate-dependent a-MG phosphorylation catalyzed by crude extracts of V. marinus and PE-36 but enhanced this activity in crude extracts of the barophile CNPT-3. Both of the pressure-adapted barophilic bacteria were capable of a-MG uptake at higher pressures than was the nonbarophilic psychrophile, V. marinus.

摘要

许多深海细菌专门适应在其自然环境中存在的高压下繁荣。为了更好地理解这些微生物的生理学和生物化学特性,研究了两种耐压分离株(PE-36、CNPT-3)和一种嗜冷海洋细菌(Vibrio marinus MP1)的葡萄糖转运系统的特性。这些细菌使用磷酸烯醇丙酮酸:糖磷酸转移酶系统(PTS)进行葡萄糖转运,类似于许多弧菌科和肠杆菌科成员中发现的 PTS。该系统对葡萄糖及其非代谢类似物甲基α-葡萄糖苷(a-MG)具有高度特异性,并且对测试的其他糖几乎没有亲和力。体外葡萄糖磷酸化的最适温度约为 20 摄氏度。深海细菌的膜结合 PTS 成分能够与鼠伤寒沙门氏菌的可溶性 PTS 酶发生酶促交叉反应,表明这些生物体的 PTS 系统之间存在功能相似性。在 CNPT-3 和 V. marinus 中,压力增加对 a-MG 摄取有抑制作用,在 V. marinus 中最为明显。与大气压相比,耐压分离株 PE-36 中的压力增加大大刺激了糖的摄取。增加的静水压力抑制了 V. marinus 和 PE-36 粗提物中磷酸烯醇丙酮酸依赖的 a-MG 磷酸化的体外催化,但增强了耐压分离株 CNPT-3 中该活性。两种适应压力的耐压细菌都能够在比非耐压嗜冷菌 V. marinus 更高的压力下摄取 a-MG。

相似文献

1
Properties of the glucose transport system in some deep-sea bacteria.
Appl Environ Microbiol. 1987 Mar;53(3):527-32. doi: 10.1128/aem.53.3.527-532.1987.
2
Thermal Inactivation of a Deep-Sea Barophilic Bacterium, Isolate CNPT-3.
Appl Environ Microbiol. 1982 Jun;43(6):1481-9. doi: 10.1128/aem.43.6.1481-1489.1982.
6
Enzymatic profiles of 11 barophilic bacteria under in situ conditions: evidence for pressure modulation of phenotype.
Appl Environ Microbiol. 1990 Mar;56(3):812-4. doi: 10.1128/aem.56.3.812-814.1990.
9
Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes.
Appl Environ Microbiol. 1986 Apr;51(4):730-7. doi: 10.1128/aem.51.4.730-737.1986.

引用本文的文献

1
Lipids of prokaryotic origin at the base of marine food webs.
Mar Drugs. 2012 Dec;10(12):2698-2714. doi: 10.3390/md10122698.
2
Production of metabolites as bacterial responses to the marine environment.
Mar Drugs. 2010 Mar 17;8(3):705-27. doi: 10.3390/md8030705.
3
In situ monitoring by quantitative Raman spectroscopy of alcoholic fermentation by Saccharomyces cerevisiae under high pressure.
Extremophiles. 2007 May;11(3):445-52. doi: 10.1007/s00792-006-0054-x. Epub 2006 Dec 22.
4
The adaptation of biological membranes to temperature and pressure: fish from the deep and cold.
J Bioenerg Biomembr. 1989 Feb;21(1):115-35. doi: 10.1007/BF00762215.
5
Enzymatic profiles of 11 barophilic bacteria under in situ conditions: evidence for pressure modulation of phenotype.
Appl Environ Microbiol. 1990 Mar;56(3):812-4. doi: 10.1128/aem.56.3.812-814.1990.

本文引用的文献

1
Isolation of a deep-sea barophilic bacterium and some of its growth characteristics.
Science. 1979 Aug 24;205(4408):808-10. doi: 10.1126/science.205.4408.808.
2
Evolutional and ecological implications of the properties of deep-sea barophilic bacteria.
Proc Natl Acad Sci U S A. 1986 Dec;83(24):9542-6. doi: 10.1073/pnas.83.24.9542.
3
THE INFLUENCE OF HYDROSTATIC PRESSURE ON THE GROWTH AND VIABILITY OF TERRESTRIAL AND MARINE BACTERIA.
J Bacteriol. 1949 Feb;57(2):179-89. doi: 10.1128/jb.57.2.179-189.1949.
4
Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes.
Appl Environ Microbiol. 1986 Apr;51(4):730-7. doi: 10.1128/aem.51.4.730-737.1986.
5
Thermal Inactivation of a Deep-Sea Barophilic Bacterium, Isolate CNPT-3.
Appl Environ Microbiol. 1982 Jun;43(6):1481-9. doi: 10.1128/aem.43.6.1481-1489.1982.
7
Survival of a psychrophilic marine Vibrio under long-term nutrient starvation.
Appl Environ Microbiol. 1977 Mar;33(3):635-41. doi: 10.1128/aem.33.3.635-641.1977.
8
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
10
Deep-sea microbiology.
Annu Rev Microbiol. 1984;38:487-514. doi: 10.1146/annurev.mi.38.100184.002415.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验