Suppr超能文献

深海原核生物新型细菌脂质的生化功能与生态意义。

Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes.

机构信息

Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093.

出版信息

Appl Environ Microbiol. 1986 Apr;51(4):730-7. doi: 10.1128/aem.51.4.730-737.1986.

Abstract

The fatty acid composition of the membrane lipids in 11 deep-sea bacterial isolates was determined. The fatty acids observed were typical of marine vibrios except for the presence of large amounts of long-chain polyunsaturated fatty acids (PUFAs). These long-chain PUFAs were previously thought to be absent in procaryotes, with the notable exception of a single marine Flexibacter sp. In three barophilic strains tested at 2 degrees C, there was a general increase in the relative amount of PUFAs as pressure was increased from a low growth pressure towards the optimal growth pressure. In Vibrio marinus MP-1, a psychrophilic strain, PUFAs were found to increase as a function of decreasing temperature at constant atmospheric pressure. These results suggest the involvement of PUFAs in the maintenance of optimal membrane fluidity and function over environmentally relevant temperatures and pressures. Furthermore, since these lipids are essential nutrients for higher taxa and are found in large amounts in the lipids of deep-sea vertebrates and invertebrates, an important, specific role for deep-sea bacteria in abyssal food webs is implicated.

摘要

对 11 株深海细菌分离株的膜脂脂肪酸组成进行了测定。除了存在大量长链多不饱和脂肪酸 (PUFA) 外,所观察到的脂肪酸是典型的海洋弧菌。以前认为这些长链 PUFAs 不存在于原核生物中,只有一种海洋 Flexibacter sp. 是个显著的例外。在 3 株嗜压菌中进行的测试中,随着压力从低生长压力升高到最佳生长压力,PUFAs 的相对含量普遍增加。在海洋弧菌 MP-1 中,一种嗜冷菌,发现 PUFAs 随着恒定大气压下温度的降低而增加。这些结果表明 PUFAs 参与了在与环境相关的温度和压力范围内维持最佳膜流动性和功能。此外,由于这些脂质是高等分类群的必需营养物质,并且在深海脊椎动物和无脊椎动物的脂质中大量存在,深海细菌在深渊食物网中具有重要的、特定的作用。

相似文献

1
Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes.
Appl Environ Microbiol. 1986 Apr;51(4):730-7. doi: 10.1128/aem.51.4.730-737.1986.
3
Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure.
Science. 1985 May 31;228(4703):1101-3. doi: 10.1126/science.3992247.
4
Properties of the glucose transport system in some deep-sea bacteria.
Appl Environ Microbiol. 1987 Mar;53(3):527-32. doi: 10.1128/aem.53.3.527-532.1987.
5
New method for isolating barophiles from intestinal contents of deep-sea fishes retrieved from the abyssal zone.
Appl Environ Microbiol. 1994 Nov;60(11):4210-2. doi: 10.1128/aem.60.11.4210-4212.1994.
7
Adaptive changes in membrane lipids of barophilic bacteria in response to changes in growth pressure.
Appl Environ Microbiol. 1998 Feb;64(2):479-85. doi: 10.1128/AEM.64.2.479-485.1998.
8
The ribonucleotide sequence of 5s rRNA from two strains of deep-sea barophilic bacteria.
J Gen Microbiol. 1984 Aug;130(8):1911-20. doi: 10.1099/00221287-130-8-1911.
9
Diversity and association of psychrophilic bacteria in Antarctic sea ice.
Appl Environ Microbiol. 1997 Aug;63(8):3068-78. doi: 10.1128/aem.63.8.3068-3078.1997.

引用本文的文献

1
is a putative producer of polyunsaturated fatty acids in the gut soil of the composting earthworm .
Appl Environ Microbiol. 2025 Feb 19;91(2):e0206924. doi: 10.1128/aem.02069-24. Epub 2025 Jan 16.
2
Metabolic adaptations of YLB-09 for survival in the high-pressure environment of the deep sea.
Front Microbiol. 2024 Oct 17;15:1467153. doi: 10.3389/fmicb.2024.1467153. eCollection 2024.
3
Metabolic adaptations of Microbacterium sediminis YLB-01 in deep-sea high-pressure environments.
Appl Microbiol Biotechnol. 2024 Jan 24;108(1):170. doi: 10.1007/s00253-023-12906-5.
4
Resource partitioning and amino acid assimilation in a terrestrial geothermal spring.
ISME J. 2023 Nov;17(11):2112-2122. doi: 10.1038/s41396-023-01517-7. Epub 2023 Sep 23.
5
Rapid remodeling of the soil lipidome in response to a drying-rewetting event.
Microbiome. 2023 Feb 27;11(1):34. doi: 10.1186/s40168-022-01427-4.
6
Microbial membrane lipid adaptations to high hydrostatic pressure in the marine environment.
Front Mol Biosci. 2023 Jan 6;9:1058381. doi: 10.3389/fmolb.2022.1058381. eCollection 2022.
7
Microbes: A Hidden Treasure of Polyunsaturated Fatty Acids.
Front Nutr. 2022 Mar 17;9:827837. doi: 10.3389/fnut.2022.827837. eCollection 2022.
8
The Effects of Freeze-Thaw and UVC Radiation on Microbial Survivability in a Selected Mars-like Environment.
Microorganisms. 2022 Mar 7;10(3):576. doi: 10.3390/microorganisms10030576.
10
Metagenomic Insights Into the Structure and Function of Intestinal Microbiota of the Hadal Amphipods.
Front Microbiol. 2021 Jun 7;12:668989. doi: 10.3389/fmicb.2021.668989. eCollection 2021.

本文引用的文献

1
Isolation of a deep-sea barophilic bacterium and some of its growth characteristics.
Science. 1979 Aug 24;205(4408):808-10. doi: 10.1126/science.205.4408.808.
2
EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI.
J Bacteriol. 1962 Dec;84(6):1260-7. doi: 10.1128/jb.84.6.1260-1267.1962.
5
Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria.
Appl Environ Microbiol. 1982 Dec;44(6):1356-61. doi: 10.1128/aem.44.6.1356-1361.1982.
6
Barophilic bacteria associated with digestive tracts of abyssal holothurians.
Appl Environ Microbiol. 1982 Nov;44(5):1222-30. doi: 10.1128/aem.44.5.1222-1230.1982.
7
Thermal Inactivation of a Deep-Sea Barophilic Bacterium, Isolate CNPT-3.
Appl Environ Microbiol. 1982 Jun;43(6):1481-9. doi: 10.1128/aem.43.6.1481-1489.1982.
8
Characterization of benthic microbial community structure by high-resolution gas chromatography of Fatty Acid methyl esters.
Appl Environ Microbiol. 1980 Jun;39(6):1212-22. doi: 10.1128/aem.39.6.1212-1222.1980.
9
BIOSYNTHESIS OF UNSATURATED FATTY ACIDS IN MICROORGANISMS.
Science. 1964 Mar 6;143(3610):1006-12. doi: 10.1126/science.143.3610.1006.
10
Deep-sea microbiology.
Annu Rev Microbiol. 1984;38:487-514. doi: 10.1146/annurev.mi.38.100184.002415.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验