Biochemistry Department, University of Minnesota, St. Paul, Minnesota 55108.
Appl Environ Microbiol. 1987 Dec;53(12):2935-41. doi: 10.1128/aem.53.12.2935-2941.1987.
(i) plate colony counting to determine microbial growth and (ii) microbial calorimetry. These methods were chosen because they accept raw samples and have the potential to be far more specific than spectrophotometric reducing sugar assays. Microbial calorimetry requires ca. 0.5 to 1 h and 10 to 100 muM concentrations of cellulolytic lower sugars (glucose and cellobiose). Growth assay (liquid culture, plating, colony counting) requires 15 to 20 h and ca. 0.5 mM sugars. Microbial calorimetry requires simply aerobic metabolism, whereas growth assay requires completion of the cell cycle. A stripping technique is described for use in conjunction with the calorimetric method to enable separate analysis of the two sugars. Mixtures of glucose and cellobiose are equilibrated with Escherichia coli and spun out to remove glucose. The supernatant is calorimetrically combusted with Klebsiella sp. to quantitate cellobiose, and the same organism combusting the nonstripped mixture gives heat proportional to the sum of the two sugars. Calorimetry of cellulolysis products from individual exo- and endocellulases, and from their reconstituted mixture, was carried out to develop a microbial calorimetric means for demonstrating enzyme synergism.
(i)平板菌落计数法来确定微生物的生长,(ii)微生物量热法。之所以选择这两种方法,是因为它们可以接受原始样品,并且比分光光度法还原糖测定法更具特异性。微生物量热法需要约 0.5 至 1 小时和 10 至 100 μM 的纤维素低聚糖(葡萄糖和纤维二糖)浓度。生长测定法(液体培养、接种、菌落计数)需要 15 至 20 小时和约 0.5 mM 的糖。微生物量热法仅需要需氧代谢,而生长测定法需要完成细胞周期。本文描述了一种剥离技术,可与量热法一起使用,以实现两种糖的单独分析。将葡萄糖和纤维二糖的混合物与大肠杆菌平衡,然后离心去除葡萄糖。用克雷伯氏菌将上清液进行量热燃烧,以定量分析纤维二糖,而用相同的生物燃烧未经剥离的混合物则会产生与两种糖总和成正比的热量。对来自外切和内切纤维素酶及其重组混合物的纤维素水解产物进行量热法分析,以开发一种微生物量热法来证明酶协同作用。