Suppr超能文献

肺炎克雷伯菌中L-山梨糖代谢以及大肠杆菌K-12的山梨糖阳性衍生物与对山梨糖的趋化作用

L-Sorbose metabolism in Klebsiella pneumoniae and Sor+ derivatives of Escherichia coli K-12 and chemotaxis toward sorbose.

作者信息

Sprenger G A, Lengeler J W

出版信息

J Bacteriol. 1984 Jan;157(1):39-45. doi: 10.1128/jb.157.1.39-45.1984.

Abstract

L-Sorbose degradation in Klebsiella pneumoniae was shown to follow the pathway L-sorbose leads to L-sorbose-1-phosphate leads to D-glucitol-6-phosphate leads to D-fructose-6-phosphate. Transport and phosphorylation of L-sorbose was catalyzed by membrane-bound enzyme IIsor of the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system, specific for and regulated by this ketose and different from all other enzymes II described thus far. Two soluble enzymes, an L-sorbose-1-phosphate reductase and a D-glucitol-6-phosphate dehydrogenase, were involved in the conversion of L-sorbose-1-phosphate to D-fructose-6-phosphate. This dehydrogenase was temperature sensitive, preventing growth of wild-type strains of K. pneumoniae at temperatures above 35 degrees C in the presence of L-sorbose. The enzyme was distinct from a second D-glucitol-6-phosphate dehydrogenase involved in the metabolism of D-glucitol. The sor genes were transferred from the chromosome of nonmotile strains of K. pneumoniae by means of a new R'sor+ plasmid to motile strains of Escherichia coli K-12. Such derivatives not only showed the temperature-sensitive Sor+ phenotype characteristic for K. pneumoniae or Sor+ wild-type strains of E. coli, but also reacted positively to sorbose in chemotaxis tests.

摘要

肺炎克雷伯菌中L-山梨糖的降解途径显示为:L-山梨糖生成L-山梨糖-1-磷酸,再生成D-葡萄糖醇-6-磷酸,最后生成D-果糖-6-磷酸。L-山梨糖的转运和磷酸化由磷酸烯醇丙酮酸依赖性碳水化合物:磷酸转移酶系统的膜结合酶IIsor催化,该酶对这种酮糖具有特异性且受其调节,与迄今为止描述的所有其他酶II不同。两种可溶性酶,即L-山梨糖-1-磷酸还原酶和D-葡萄糖醇-6-磷酸脱氢酶,参与了L-山梨糖-1-磷酸向D-果糖-6-磷酸的转化。这种脱氢酶对温度敏感,在L-山梨糖存在的情况下,会阻止肺炎克雷伯菌野生型菌株在35摄氏度以上的温度下生长。该酶与参与D-葡萄糖醇代谢的第二种D-葡萄糖醇-6-磷酸脱氢酶不同。sor基因通过一种新的R'sor+质粒从肺炎克雷伯菌非运动菌株的染色体转移到大肠杆菌K-12的运动菌株中。这些衍生物不仅表现出肺炎克雷伯菌或大肠杆菌Sor+野生型菌株特有的温度敏感Sor+表型,而且在趋化性试验中对山梨糖呈阳性反应。

相似文献

2
4
Cloning and physical mapping of the sor genes for L-sorbose transport and metabolism from Klebsiella pneumoniae.
Mol Microbiol. 1990 Sep;4(9):1557-65. doi: 10.1111/j.1365-2958.1990.tb02067.x.
6
Genetics of L-sorbose transport and metabolism in Lactobacillus casei.
J Bacteriol. 2000 Jan;182(1):155-63. doi: 10.1128/JB.182.1.155-163.2000.
7
Sequence of the sor-operon for L-sorbose utilization from Klebsiella pneumoniae KAY2026.
Biochim Biophys Acta. 1994 Oct 19;1208(2):348-51. doi: 10.1016/0167-4838(94)90124-4.
9
Genes for l-sorbose utilization in Escherichia coli.
J Gen Microbiol. 1982 Sep;128(9):1969-80. doi: 10.1099/00221287-128-9-1969.

引用本文的文献

2
Selective carbon sources influence the end products of microbial nitrate respiration.
ISME J. 2020 Aug;14(8):2034-2045. doi: 10.1038/s41396-020-0666-7. Epub 2020 May 5.
3
High Throughput Screening Platform for a FAD-Dependent L-Sorbose Dehydrogenase.
Front Bioeng Biotechnol. 2020 Mar 17;8:194. doi: 10.3389/fbioe.2020.00194. eCollection 2020.
5
Design and activity of a 'dual-targeted' antimicrobial peptide.
Int J Antimicrob Agents. 2009 Jun;33(6):532-7. doi: 10.1016/j.ijantimicag.2008.11.013. Epub 2009 Feb 1.
6
Overexpression, purification and crystallization of the tetrameric form of SorC sorbitol operon regulator.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008 Jan 1;64(Pt 1):22-4. doi: 10.1107/S1744309107060897. Epub 2007 Dec 20.
7
Adding selectivity to antimicrobial peptides: rational design of a multidomain peptide against Pseudomonas spp.
Antimicrob Agents Chemother. 2006 Apr;50(4):1480-8. doi: 10.1128/AAC.50.4.1480-1488.2006.
8
Calorimetric versus Growth Microbial Analysis of Cellulase Enzymes Acting on Cellulose.
Appl Environ Microbiol. 1987 Dec;53(12):2935-41. doi: 10.1128/aem.53.12.2935-2941.1987.
9
Genetics of L-sorbose transport and metabolism in Lactobacillus casei.
J Bacteriol. 2000 Jan;182(1):155-63. doi: 10.1128/JB.182.1.155-163.2000.
10
Temperature-dependent fermentation of D-sorbitol in Escherichia coli O157:H7.
Appl Environ Microbiol. 1999 Sep;65(9):4245-57. doi: 10.1128/AEM.65.9.4245-4257.1999.

本文引用的文献

1
A NEW METHOD FOR THE SELECTION OF MUTANTS OF ESCHERICHIA COLI FORMING BETA-GALACTOSIDASE CONSTITUTIVELY.
Biochim Biophys Acta. 1964 Sep 4;90:609-10. doi: 10.1016/0304-4165(64)90241-7.
4
L-Sorbose phosphorylation in Escherichia coli K-12.
Biochim Biophys Acta. 1981 Aug 20;646(2):365-7. doi: 10.1016/0005-2736(81)90346-1.
5
Genes for l-sorbose utilization in Escherichia coli.
J Gen Microbiol. 1982 Sep;128(9):1969-80. doi: 10.1099/00221287-128-9-1969.
6
L-Sorbose-1-phosphate reductase.
Methods Enzymol. 1982;89 Pt D:248-51. doi: 10.1016/s0076-6879(82)89044-7.
7
Linkage map of Escherichia coli K-12, edition 7.
Microbiol Rev. 1983 Jun;47(2):180-230. doi: 10.1128/mr.47.2.180-230.1983.
8
Adenylate cyclase is required for chemotaxis to phosphotransferase system sugars by Escherichia coli.
J Bacteriol. 1983 Mar;153(3):1187-95. doi: 10.1128/jb.153.3.1187-1195.1983.
9
Novel sensory adaptation mechanism in bacterial chemotaxis to oxygen and phosphotransferase substrates.
Proc Natl Acad Sci U S A. 1982 Jan;79(1):11-5. doi: 10.1073/pnas.79.1.11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验