Suppr超能文献

土壤反硝化菌种群动态:酶活性、最可能数计数与实际 N 气体损失之间的关系。

Dynamics of Soil Denitrifier Populations: Relationships between Enzyme Activity, Most-Probable-Number Counts, and Actual N Gas Loss.

机构信息

Department of Agronomy, University of Kentucky, Lexington, Kentucky 40546.

出版信息

Appl Environ Microbiol. 1988 Nov;54(11):2711-6. doi: 10.1128/aem.54.11.2711-2716.1988.

Abstract

To better understand temporal variability in soil denitrification, denitrifying enzyme activity (DEA) and denitrifier populations (as determined by most-probable-number [MPN] counts) were measured in field and laboratory experiments. Measurements of DEA and MPN provided highly contradictory indications of denitrifier dynamics. In laboratory incubations, under conditions favoring active denitrification, the synthesis of new denitrifying enzymes and the actual amount of denitrification were closely related. In other experiments, however, both DEA and MPN counts were poor indicators of actual denitrification. In some cases, we found significant increases in DEA but no significant production of N gas. Except with unnaturally high substrate amendments, changes in DEA were small relative both to the persistently high DEA background and to changes in MPN. As estimated by MPN counts, denitrifier populations increased significantly during denitrification events. It was apparent that only a small fraction of the denitrifiers were included in the MPN counts, but it appeared that this isolatable fraction increased during periods of active denitrifier growth. Use of DEA as an index of biomass of cells which have synthesized denitrifying enzymes suggested that denitrifier populations were persistent, stable, and much larger than indicated by MPN procedures.

摘要

为了更好地理解土壤反硝化的时间变异性,我们在野外和实验室实验中测量了反硝化酶活性(DEA)和反硝化菌数量(通过最可能数[MPN]计数确定)。DEA 和 MPN 的测量结果对反硝化菌动态提供了高度矛盾的指示。在实验室培养中,在有利于反硝化活性的条件下,新的反硝化酶的合成和实际的反硝化作用密切相关。然而,在其他实验中,DEA 和 MPN 计数都不能很好地指示实际的反硝化作用。在某些情况下,我们发现 DEA 显著增加,但没有显著产生 N 气体。除了采用不自然的高底物添加外,DEA 的变化相对于持续的高 DEA 背景和 MPN 的变化都很小。根据 MPN 计数估计,反硝化菌数量在反硝化事件中显著增加。显然,只有一小部分反硝化菌被包括在 MPN 计数中,但似乎在反硝化菌生长活跃期间,可分离的部分增加了。使用 DEA 作为已经合成反硝化酶的细胞生物量的指标表明,反硝化菌种群是持久的、稳定的,而且比 MPN 方法所指示的要大得多。

相似文献

2
Persistence of denitrifying enzyme activity in dried soils.
Appl Environ Microbiol. 1985 Feb;49(2):316-20. doi: 10.1128/aem.49.2.316-320.1985.
3
Spatial heterogeneity in the distribution of denitrifying bacteria associated with denitrification activity zones.
Appl Environ Microbiol. 1995 Jul;61(7):2791-3. doi: 10.1128/aem.61.7.2791-2793.1995.
4
Effect of pH on the denitrifying enzyme activity in pasture soils in relation to the intrinsic differences in denitrifier communities.
Folia Microbiol (Praha). 2011 May;56(3):230-5. doi: 10.1007/s12223-011-0045-x. Epub 2011 Jun 28.
5
Impact of Land Use Management and Soil Properties on Denitrifier Communities of Namibian Savannas.
Microb Ecol. 2015 Nov;70(4):981-92. doi: 10.1007/s00248-015-0623-6. Epub 2015 May 15.
7
Influence of temperature on the composition and activity of denitrifying soil communities.
FEMS Microbiol Ecol. 2010 Jul 1;73(1):134-48. doi: 10.1111/j.1574-6941.2010.00884.x. Epub 2010 Apr 8.
9
Modeling nitrous oxide production and reduction in soil through explicit representation of denitrification enzyme kinetics.
Environ Sci Technol. 2015 Feb 17;49(4):2132-9. doi: 10.1021/es504513v. Epub 2015 Jan 27.

引用本文的文献

2
Dissimilatory nitrate reduction in anaerobic sediments leading to river nitrite accumulation.
Appl Environ Microbiol. 1997 Dec;63(12):4679-85. doi: 10.1128/aem.63.12.4679-4685.1997.
4
Spatial heterogeneity in the distribution of denitrifying bacteria associated with denitrification activity zones.
Appl Environ Microbiol. 1995 Jul;61(7):2791-3. doi: 10.1128/aem.61.7.2791-2793.1995.
5
Competition between Two Isolates of Denitrifying Bacteria Added to Soil.
Appl Environ Microbiol. 1992 Dec;58(12):3890-5. doi: 10.1128/aem.58.12.3890-3895.1992.
6
Production and consumption of nitric oxide by three methanotrophic bacteria.
Appl Environ Microbiol. 2000 Sep;66(9):3891-7. doi: 10.1128/AEM.66.9.3891-3897.2000.
7
Chloramphenicol inhibition of denitrifying enzyme activity in two agricultural soils.
Appl Environ Microbiol. 1999 Aug;65(8):3487-92. doi: 10.1128/AEM.65.8.3487-3492.1999.
9
Aerobic and anaerobic growth of rifampin-resistant denitrifying bacteria in soil.
Appl Environ Microbiol. 1990 Feb;56(2):323-8. doi: 10.1128/aem.56.2.323-328.1990.
10
Biodegradation of organic compounds in vadose zone and aquifer sediments.
Appl Environ Microbiol. 1991 Aug;57(8):2260-8. doi: 10.1128/aem.57.8.2260-2268.1991.

本文引用的文献

1
Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers.
Appl Environ Microbiol. 1986 May;51(5):938-45. doi: 10.1128/aem.51.5.938-945.1986.
2
Persistence of denitrifying enzyme activity in dried soils.
Appl Environ Microbiol. 1985 Feb;49(2):316-20. doi: 10.1128/aem.49.2.316-320.1985.
3
Denitrification: ecological niches, competition and survival.
Antonie Van Leeuwenhoek. 1982;48(6):569-83. doi: 10.1007/BF00399542.
4
Reduction of nitrogenous oxides by microorganisms.
Bacteriol Rev. 1973 Dec;37(4):409-52. doi: 10.1128/br.37.4.409-452.1973.
5
Survival strategies of bacteria in the natural environment.
Microbiol Rev. 1987 Sep;51(3):365-79. doi: 10.1128/mr.51.3.365-379.1987.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验