Suppr超能文献

相似文献

1
Hydrogen and Formate Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese by Alteromonas putrefaciens.
Appl Environ Microbiol. 1989 Mar;55(3):700-6. doi: 10.1128/aem.55.3.700-706.1989.
2
Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.
Appl Environ Microbiol. 1988 Jun;54(6):1472-80. doi: 10.1128/aem.54.6.1472-1480.1988.
3
Dissimilatory Fe(III) and Mn(IV) reduction.
Microbiol Rev. 1991 Jun;55(2):259-87. doi: 10.1128/mr.55.2.259-287.1991.
4
A Hydrogen-Oxidizing, Fe(III)-Reducing Microorganism from the Great Bay Estuary, New Hampshire.
Appl Environ Microbiol. 1992 Oct;58(10):3211-6. doi: 10.1128/aem.58.10.3211-3216.1992.
5
Dissimilatory Fe(III) and Mn(IV) reduction.
Adv Microb Physiol. 2004;49:219-86. doi: 10.1016/S0065-2911(04)49005-5.
7
Anaerobic Oxidation of Toluene, Phenol, and p-Cresol by the Dissimilatory Iron-Reducing Organism, GS-15.
Appl Environ Microbiol. 1990 Jun;56(6):1858-64. doi: 10.1128/aem.56.6.1858-1864.1990.
8
Dissimilatory Fe(III) Reduction by the Marine Microorganism Desulfuromonas acetoxidans.
Appl Environ Microbiol. 1993 Mar;59(3):734-42. doi: 10.1128/aem.59.3.734-742.1993.

引用本文的文献

3
Moving towards the enhancement of extracellular electron transfer in electrogens.
World J Microbiol Biotechnol. 2023 Mar 24;39(5):130. doi: 10.1007/s11274-023-03582-8.
4
Effects of Magnetic Minerals Exposure and Microbial Responses in Surface Sediment across the Bohai Sea.
Microorganisms. 2021 Dec 21;10(1):6. doi: 10.3390/microorganisms10010006.
5
Biofilm Biology and Engineering of and spp. for Energy Applications.
Front Bioeng Biotechnol. 2021 Dec 3;9:786416. doi: 10.3389/fbioe.2021.786416. eCollection 2021.
6
Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms.
Nat Rev Microbiol. 2022 Jan;20(1):5-19. doi: 10.1038/s41579-021-00597-6. Epub 2021 Jul 27.
7
Impact of Fe(III) (Oxyhydr)oxides Mineralogy on Iron Solubilization and Associated Microbial Communities.
Front Microbiol. 2020 Nov 20;11:571244. doi: 10.3389/fmicb.2020.571244. eCollection 2020.
8
Metagenomics Meets Electrochemistry: Utilizing the Huge Catalytic Potential From the Uncultured Microbial Majority for Energy-Storage.
Front Bioeng Biotechnol. 2020 Jun 4;8:567. doi: 10.3389/fbioe.2020.00567. eCollection 2020.
9
Aerobic radical polymerization mediated by microbial metabolism.
Nat Chem. 2020 Jul;12(7):638-646. doi: 10.1038/s41557-020-0460-1. Epub 2020 May 18.
10
Microbial reduction of metal-organic frameworks enables synergistic chromium removal.
Nat Commun. 2019 Nov 18;10(1):5212. doi: 10.1038/s41467-019-13219-w.

本文引用的文献

1
Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor.
Science. 1988 Jun 3;240(4857):1319-21. doi: 10.1126/science.240.4857.1319.
2
Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.
Appl Environ Microbiol. 1988 Jun;54(6):1472-80. doi: 10.1128/aem.54.6.1472-1480.1988.
3
Anaerobic microbial dissolution of transition and heavy metal oxides.
Appl Environ Microbiol. 1988 Apr;54(4):1009-14. doi: 10.1128/aem.54.4.1009-1014.1988.
5
6
Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal potomac river.
Appl Environ Microbiol. 1986 Oct;52(4):751-7. doi: 10.1128/aem.52.4.751-757.1986.
7
Organic matter mineralization with reduction of ferric iron in anaerobic sediments.
Appl Environ Microbiol. 1986 Apr;51(4):683-9. doi: 10.1128/aem.51.4.683-689.1986.
8
Minimum threshold for hydrogen metabolism in methanogenic bacteria.
Appl Environ Microbiol. 1985 Jun;49(6):1530-1. doi: 10.1128/aem.49.6.1530-1531.1985.
9
Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate.
Appl Environ Microbiol. 1982 Feb;43(2):319-24. doi: 10.1128/aem.43.2.319-324.1982.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验